Convex Ordering for Random Vectors using Predictable Representation

被引:11
作者
Arnaudon, Marc [2 ]
Breton, Jean-Christophe [3 ]
Privault, Nicolas [1 ]
机构
[1] City Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[2] Univ Poitiers, CNRS, UMR 6086, LMA, F-86962 Futuroscope, France
[3] Univ La Rochelle, Lab Math Image & Applicat, F-17042 La Rochelle, France
关键词
Convex ordering; Forward-backward stochastic calculus; Deviation inequalities; Brownian motion; Jump processes;
D O I
10.1007/s11118-008-9100-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove convex ordering results for random vectors admitting a predictable representation in terms of a Brownian motion and a non-necessarily independent jump component. Our method uses forward-backward stochastic calculus and extends the results proved in Klein et al. (Electron J Probab 11(20):27, 2006) in the one-dimensional case. We also study a geometric interpretation of convex ordering for discrete measures in connection with the conditions set on the jump heights and intensities of the considered processes.
引用
收藏
页码:327 / 349
页数:23
相关论文
共 7 条
[1]   Comparison of semimartingales and Levy processes [J].
Bergenthum, Jan ;
Ruedschendorf, Ludger .
ANNALS OF PROBABILITY, 2007, 35 (01) :228-254
[2]   Comparison of option prices in semimartingale models [J].
Bergenthum, Jan ;
Rueschendorf, Ludger .
FINANCE AND STOCHASTICS, 2006, 10 (02) :222-249
[3]  
DELLACHERIE C, 1983, PROBABILITES POTENTI, V2
[4]   Electromagnetic properties of cemented paste backfill [J].
Klein, K ;
Simon, D .
JOURNAL OF ENVIRONMENTAL AND ENGINEERING GEOPHYSICS, 2006, 11 (01) :27-41
[5]   On the optimal stopping values induced by general dependence structures [J].
Müller, A ;
Rüschendorf, L .
JOURNAL OF APPLIED PROBABILITY, 2001, 38 (03) :672-684
[6]  
Rockafeller R.T., 1970, CONVEX ANAL
[7]   THE EXISTENCE OF PROBABILITY-MEASURES WITH GIVEN MARGINALS [J].
STRASSEN, V .
ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (02) :423-439