Subsequences of Triangular Partial Sums of Double Fourier Series on Unbounded Vilenkin Groups

被引:0
作者
Gat, Gyorgy [1 ]
Goginava, Ushangi [2 ]
机构
[1] Univ Debrecen, Inst Math, Pf 400, H-4002 Debrecen, Hungary
[2] Tbilisi State Univ, Fac Exact & Nat Sci, Dept Math, Chavchavadze Str 1, GE-0128 Tbilisi, Georgia
关键词
Unbounded Vilenkin system; Almost Everywhere Converges; Triangular Partial Sums; CONVERGENCE; EVERYWHERE;
D O I
10.2298/FIL1811769G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1987 Harris proved-among others-that for each 1 <= p < 2 there exists a two-dimensional function f is an element of L-p such that its triangular partial sums S-2A(Delta) f of Walsh-Fourier series does not converge almost everywhere. In this paper we prove that subsequences of triangular partial sums S-nAmA(Delta) f, n(A) is an element of {1, 2, ..., m(A) - 1} on unbounded Vilenkin groups converge almost everywhere to f for each function f is an element of L-2.
引用
收藏
页码:3769 / 3778
页数:10
相关论文
共 7 条
[1]  
Agaev G.N., 1981, Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups
[2]  
Antonov N. Yu, 1995, E J APPROX, V2, P187
[3]   CONVERGENCE OF MULTIPLE FOURIER SERIES [J].
FEFFERMAN, C .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 77 (05) :744-+
[4]  
Gat G., 2006, Georgian Math. J., V13, P447
[5]   ALMOST EVERYWHERE DIVERGENCE OF MULTIPLE WALSH-FOURIER SERIES [J].
HARRIS, DC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 101 (04) :637-643
[6]  
Schipp F., 1990, WALSH SERIES INTRO D
[7]   CONVERGENCE ALMOST EVERYWHERE OF CERTAIN SINGULAR INTEGRALS AND MULTIPLE FOURIER-SERIES [J].
SJOLIN, P .
ARKIV FOR MATEMATIK, 1971, 9 (01) :65-&