On type-2 fuzzy sets and their t-norm operations

被引:69
作者
Hu, Bao Qing [1 ]
Kwong, C. K. [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Type-2 fuzzy set; Fuzzy true value; t-Norm; Type-2 fuzzy number; TRUTH VALUES; UNCERTAINTY MEASURES; TRIANGULAR NORMS; LOGIC SYSTEMS; FUZZISTICS; ALGORITHMS; OPERATORS; ALGEBRA;
D O I
10.1016/j.ins.2013.07.023
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we discuss t-norm extension operations of general binary operation for fuzzy true values on a linearly ordered set, with a unit interval and a real number set as special cases. On the basis of it, t-norm operations of type-2 fuzzy sets and properties of type-2 fuzzy numbers are discussed. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:58 / 81
页数:24
相关论文
共 59 条
[1]  
Baldwin J. F., 1979, Fuzzy Sets and Systems, V2, P309, DOI 10.1016/0165-0114(79)90004-6
[2]   FEASIBLE ALGORITHMS FOR APPROXIMATE REASONING USING FUZZY-LOGIC [J].
BALDWIN, JF ;
GUILD, NCF .
FUZZY SETS AND SYSTEMS, 1980, 3 (03) :225-251
[3]   Generation of linear orders for intervals by means of aggregation functions [J].
Bustince, H. ;
Fernandez, J. ;
Kolesarova, A. ;
Mesiar, R. .
FUZZY SETS AND SYSTEMS, 2013, 220 :69-77
[4]   Weighted fuzzy interpolative reasoning systems based on interval type-2 fuzzy sets [J].
Chen, Shyi-Ming ;
Lee, Li-Wei ;
Shen, Victor R. L. .
INFORMATION SCIENCES, 2013, 248 :15-30
[5]   Fuzzy decision making systems based on interval type-2 fuzzy sets [J].
Chen, Shyi-Ming ;
Wang, Cheng-Yi .
INFORMATION SCIENCES, 2013, 242 :1-21
[6]   Multiobjective transportation problem with interval cost, source and destination parameters [J].
Das, SK ;
Goswami, A ;
Alam, SS .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1999, 117 (01) :100-112
[7]   Uniforms which are neither conjunctive nor disjunctive in interval-valued fuzzy set theory [J].
Deschrijver, Glad .
INFORMATION SCIENCES, 2013, 244 :48-59
[8]   Triangular norms which are meet-morphisms in interval-valued fuzzy set theory [J].
Deschrijver, Glad .
FUZZY SETS AND SYSTEMS, 2011, 181 (01) :88-101
[9]   Generalized arithmetic operators and their relationship to t-norms in interval-valued fuzzy set theory [J].
Deschrijver, Glad .
FUZZY SETS AND SYSTEMS, 2009, 160 (21) :3080-3102
[10]   Characterizations of (weakly) Archimedean t-norms in interval-valued fuzzy set theory [J].
Deschrijver, Glad .
FUZZY SETS AND SYSTEMS, 2009, 160 (06) :778-801