A plethora of generalised solitary gravity-capillary water waves

被引:17
作者
Clamond, Didier [1 ]
Dutykh, Denys [2 ]
Duran, Angel [3 ]
机构
[1] Univ Nice Sophia Antipolis, Lab JA Dieudonne, F-06108 Nice 2, France
[2] Univ Savoie Mt Blanc, LAMA, UMR 5127, CNRS, F-73376 Le Bourget Du Lac, France
[3] Univ Valladolid, Dept Matemat Aplicada, ETSI Telecomunicac, E-47011 Valladolid, Spain
关键词
capillary waves; solitary waves; waves/free-surface flows; EXACT EVOLUTION-EQUATIONS; SURFACE-WAVES; AMPLITUDE; DYNAMICS; ALGORITHM; RIPPLES; BOND;
D O I
10.1017/jfm.2015.616
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The present study describes, first, an efficient algorithm for computing solutions in terms of capillary-gravity solitary waves of the irrotational Euler equations with a free surface and, second, provides numerical evidences of the existence of an infinite number of generalised solitary waves (solitary waves with undamped oscillatory wings). Using conformal mapping, the unknown fluid domain, which is to be determined, is mapped into a uniform strip of the complex plane. In the transformed domain, a Babenko-like equation is then derived and solved numerically.
引用
收藏
页码:664 / 680
页数:17
相关论文
共 45 条
[1]  
[Anonymous], 2000, CHEBYSHEV FOURIER SP
[2]  
Babenko K.I., 1987, Sov. Math. Dokl, V35, P599
[4]   THE GENERATION OF RADIATING WAVES IN A SINGULARLY-PERTURBED KORTEWEG-DE VRIES EQUATION [J].
BENILOV, ES ;
GRIMSHAW, R ;
KUZNETSOVA, EP .
PHYSICA D, 1993, 69 (3-4) :270-278
[5]   Why Newton's method is hard for travelling waves: Small denominators, KAM theory, Arnold's linear Fourier problem, non-uniqueness, constraints and erratic failure [J].
Boyd, John P. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 74 (2-3) :72-81
[6]   Degenerate periodic orbits and homoclinic torus bifurcation [J].
Bridges, TJ ;
Donaldson, NM .
PHYSICAL REVIEW LETTERS, 2005, 95 (10)
[7]   The regularity and local bifurcation of steady periodic water waves [J].
Buffoni, B ;
Dancer, EN ;
Toland, JF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 152 (03) :207-240
[8]   Plethora of solitary gravity-capillary water waves with nearly critical Bond and Froude numbers [J].
Buffoni, B ;
Groves, MD ;
Toland, JF .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 354 (1707) :575-607
[9]  
BUFFONI B., 1996, J. Dynam. Differential Equations, V8, P221, DOI [10.1007/bf02218892, DOI 10.1007/BF02218892]
[10]   On the formation of bound states by interacting nonlocal solitary waves [J].
Calvo, DC ;
Akylas, TR .
PHYSICA D, 1997, 101 (3-4) :270-288