Multimachine Data-Based Prediction of High-Frequency Sensor Signal Noise for Resistive Wall Mode Control in ITER

被引:4
作者
Liu, Yueqiang [1 ,2 ,3 ]
Sabbagh, S. A. [4 ]
Chapman, I. T. [1 ]
Gerasimov, S. [1 ]
Gribov, Y. [5 ]
Hender, T. C. [1 ]
Igochine, V. [6 ]
Maraschek, M. [6 ]
Matsunaga, G. [7 ]
Okabayashi, M. [8 ]
Strait, E. J. [9 ]
机构
[1] CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] Southwestern Inst Phys, POB 432, Chengdu 610041, Peoples R China
[3] Chalmers, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[5] ITER Org, Route Vinon Verdon,CS90046, F-13067 St Paul Les Durance, France
[6] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[7] Japan Atom Energy Agcy, 801-1 Mukouyama, Naka, Ibaraki 3110193, Japan
[8] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[9] Gen Atom, San Diego, CA 92186 USA
关键词
Sensor noise; resistive wall mode; DIII-D TOKAMAK; FEEDBACK STABILIZATION; PLASMA ROTATION; ACTIVE FEEDBACK; EXTERNAL-MODES;
D O I
10.13182/FST15-207
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The high-frequency noise measured by magnetic sensors, at levels above the typical frequency of resistive wall modes, is analyzed across a range of present tokamak devices including DIII-D, JET, MAST, ASDEX Upgrade, JT-60U, and NSTX. A high-pass filter enables identification of the noise component with Gaussian-like statistics that shares certain common characteristics in all devices considered. A conservative prediction is made for ITER plasma operation of the high-frequency noise component of the sensor signals, to be used for resistive wall mode feedback stabilization, based on the multimachine database. The predicted root-mean-square n = 1 (n is the toroidal mode number) noise level is 10(4) to 10(5) G/s for the voltage signal, and 0.1 to 1 G for the perturbed magnetic field signal. The lower cutoff frequency of the Gaussian pickup noise scales linearly with the sampling frequency, with a scaling coefficient of about 0.1. These basic noise characteristics should be useful for the modeling-based design of the feedback control system for the resistive wall mode in ITER.
引用
收藏
页码:387 / 405
页数:19
相关论文
共 42 条
  • [1] AMBROSINO G., 2007, COMMUNICATION
  • [2] The role of kinetic effects, including plasma rotation and energetic particles, in resistive wall mode stabilitya)
    Berkery, J. W.
    Sabbagh, S. A.
    Reimerdes, H.
    Betti, R.
    Hu, B.
    Bell, R. E.
    Gerhardt, S. P.
    Manickam, J.
    Podesta, M.
    [J]. PHYSICS OF PLASMAS, 2010, 17 (08)
  • [3] Modeling of active control of external magnetohydrodynamic instabilities
    Bialek, J
    Boozer, AH
    Mauel, ME
    Navratil, GA
    [J]. PHYSICS OF PLASMAS, 2001, 8 (05) : 2170 - 2180
  • [4] Active control of resistive wall modes in the large-aspect-ratio tokamak
    Bondeson, A
    Liu, YQ
    Gregoratto, D
    Gribov, Y
    Pustovitov, VD
    [J]. NUCLEAR FUSION, 2002, 42 (06) : 768 - 779
  • [5] STABILIZATION OF EXTERNAL-MODES IN TOKAMAKS BY RESISTIVE WALLS AND PLASMA ROTATION
    BONDESON, A
    WARD, DJ
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (17) : 2709 - 2712
  • [6] Error field amplification and rotation damping in tokamak plasmas
    Boozer, AH
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (22) : 5059 - 5061
  • [7] Kinetic damping of resistive wall modes in ITER
    Chapman, I. T.
    Liu, Y. Q.
    Asunta, O.
    Graves, J. P.
    Johnson, T.
    Jucker, M.
    [J]. PHYSICS OF PLASMAS, 2012, 19 (05)
  • [8] Stability of the resistive wall mode in JET
    Chapman, I. T.
    Gimblett, C. G.
    Gryaznevich, M. P.
    Hender, T. C.
    Howell, D. F.
    Liu, Y. Q.
    Pinches, S. D.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (05)
  • [9] CHU M. S., 2010, PLASMA PHYS CONTROLL, V51
  • [10] Resistive wall mode feedback stabilization in burning plasma experiments
    Garofalo, A
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2003, 44 (04) : 756 - 762