Multimachine Data-Based Prediction of High-Frequency Sensor Signal Noise for Resistive Wall Mode Control in ITER

被引:5
作者
Liu, Yueqiang [1 ,2 ,3 ]
Sabbagh, S. A. [4 ]
Chapman, I. T. [1 ]
Gerasimov, S. [1 ]
Gribov, Y. [5 ]
Hender, T. C. [1 ]
Igochine, V. [6 ]
Maraschek, M. [6 ]
Matsunaga, G. [7 ]
Okabayashi, M. [8 ]
Strait, E. J. [9 ]
机构
[1] CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] Southwestern Inst Phys, POB 432, Chengdu 610041, Peoples R China
[3] Chalmers, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[5] ITER Org, Route Vinon Verdon,CS90046, F-13067 St Paul Les Durance, France
[6] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[7] Japan Atom Energy Agcy, 801-1 Mukouyama, Naka, Ibaraki 3110193, Japan
[8] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[9] Gen Atom, San Diego, CA 92186 USA
关键词
Sensor noise; resistive wall mode; DIII-D TOKAMAK; FEEDBACK STABILIZATION; PLASMA ROTATION; ACTIVE FEEDBACK; EXTERNAL-MODES;
D O I
10.13182/FST15-207
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The high-frequency noise measured by magnetic sensors, at levels above the typical frequency of resistive wall modes, is analyzed across a range of present tokamak devices including DIII-D, JET, MAST, ASDEX Upgrade, JT-60U, and NSTX. A high-pass filter enables identification of the noise component with Gaussian-like statistics that shares certain common characteristics in all devices considered. A conservative prediction is made for ITER plasma operation of the high-frequency noise component of the sensor signals, to be used for resistive wall mode feedback stabilization, based on the multimachine database. The predicted root-mean-square n = 1 (n is the toroidal mode number) noise level is 10(4) to 10(5) G/s for the voltage signal, and 0.1 to 1 G for the perturbed magnetic field signal. The lower cutoff frequency of the Gaussian pickup noise scales linearly with the sampling frequency, with a scaling coefficient of about 0.1. These basic noise characteristics should be useful for the modeling-based design of the feedback control system for the resistive wall mode in ITER.
引用
收藏
页码:387 / 405
页数:19
相关论文
共 42 条
[1]  
AMBROSINO G., 2007, COMMUNICATION
[2]   The role of kinetic effects, including plasma rotation and energetic particles, in resistive wall mode stabilitya) [J].
Berkery, J. W. ;
Sabbagh, S. A. ;
Reimerdes, H. ;
Betti, R. ;
Hu, B. ;
Bell, R. E. ;
Gerhardt, S. P. ;
Manickam, J. ;
Podesta, M. .
PHYSICS OF PLASMAS, 2010, 17 (08)
[3]   Modeling of active control of external magnetohydrodynamic instabilities [J].
Bialek, J ;
Boozer, AH ;
Mauel, ME ;
Navratil, GA .
PHYSICS OF PLASMAS, 2001, 8 (05) :2170-2180
[4]   Active control of resistive wall modes in the large-aspect-ratio tokamak [J].
Bondeson, A ;
Liu, YQ ;
Gregoratto, D ;
Gribov, Y ;
Pustovitov, VD .
NUCLEAR FUSION, 2002, 42 (06) :768-779
[5]   STABILIZATION OF EXTERNAL-MODES IN TOKAMAKS BY RESISTIVE WALLS AND PLASMA ROTATION [J].
BONDESON, A ;
WARD, DJ .
PHYSICAL REVIEW LETTERS, 1994, 72 (17) :2709-2712
[6]   Error field amplification and rotation damping in tokamak plasmas [J].
Boozer, AH .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5059-5061
[7]   Kinetic damping of resistive wall modes in ITER [J].
Chapman, I. T. ;
Liu, Y. Q. ;
Asunta, O. ;
Graves, J. P. ;
Johnson, T. ;
Jucker, M. .
PHYSICS OF PLASMAS, 2012, 19 (05)
[8]   Stability of the resistive wall mode in JET [J].
Chapman, I. T. ;
Gimblett, C. G. ;
Gryaznevich, M. P. ;
Hender, T. C. ;
Howell, D. F. ;
Liu, Y. Q. ;
Pinches, S. D. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (05)
[9]  
CHU M. S., 2010, PLASMA PHYS CONTROLL, V51
[10]   Resistive wall mode feedback stabilization in burning plasma experiments [J].
Garofalo, A .
FUSION SCIENCE AND TECHNOLOGY, 2003, 44 (04) :756-762