Terahertz absorption in graphite nanoplatelets/polylactic acid composites

被引:37
作者
Bychanok, D. [1 ]
Angelova, P. [2 ]
Paddubskaya, A. [1 ]
Meisak, D. [1 ]
Shashkova, L. [1 ]
Demidenko, M. [1 ]
Plyushch, A. [1 ]
Ivanov, E. [2 ]
Krastev, R. [2 ]
Kotsilkova, R. [2 ]
Ogrin, F. Y. [3 ]
Kuzhir, P. [1 ,4 ]
机构
[1] Belarusian State Univ, Res Inst Nucl Problems, Bobruiskaya Str 11, Minsk 220030, BELARUS
[2] Bulgarian Acad Sci, Inst Mech, OLEM, Acad G Bonchev Str 4, BU-1113 Sofia, Bulgaria
[3] Univ Exeter, Exeter EX4 4QL, Devon, England
[4] Tomsk State Univ, 36 Lenin Prospekt, Tomsk 634050, Russia
关键词
PLA composites; terahertz absorption; Ka-band; Maxwell-Garnett theory; graphite nanoplatelets; ELECTROMAGNETIC RESPONSE; GRAPHENE;
D O I
10.1088/1361-6463/aab1a5
中图分类号
O59 [应用物理学];
学科分类号
摘要
The electromagnetic properties of composite materials based on poly(lactic) acid (PLA) filled with graphite nanoplatelets (GNP) were investigated in the microwave (26-37 GHz) and terahertz (0.2-1 THz) frequency ranges. The maximum of the imaginary part of the dielectric permittivity was observed close to 0.6 THz for composites with 1.5 and 3 wt.% of GNP. The experimental data of complex dielectric permittivity of GNP/PLA composites was modelled using the Maxwell-Garnett theory. The effects of fine dispersion, agglomeration, and percolation in GNP-based composites on its electromagnetic constitutive parameters, presence, and position of THz absorption peak are discussed on the basis of the modeling results and experimental data. The unique combination of conductive and geometrical parameters of GNP embedded into the PLA matrix below the percolation threshold allow us to obtain the THz-absorptive material, which may be effectively used as a 3D-printing filament.
引用
收藏
页数:8
相关论文
共 37 条
[1]  
[Anonymous], 1960, Course of Theoretical Physics
[2]  
[Anonymous], 1998, ABSORPTION SCATTERIN
[3]  
[Anonymous], 2009, D556808 ASTM
[4]   Mesostructure, electron paramagnetic resonance, and magnetic properties of polymer carbon black composites [J].
Brosseau, C ;
Molinié, P ;
Boulic, F ;
Carmona, F .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (12) :8297-8310
[5]  
Bychanok Dzmitry, 2016, Progress In Electromagnetics Research C, V66, P77
[6]   Characterizing epoxy composites filled with carbonaceous nanoparticles from dc to microwave [J].
Bychanok, D. ;
Kuzhir, P. ;
Maksimenko, S. ;
Bellucci, S. ;
Brosseau, C. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (12)
[7]   THz TDS study of several sp2 carbon materials: Graphite, needle coke and graphene oxides [J].
Chamorro-Posada, Pedro ;
Vazquez-Cabo, Jose ;
Rubinos-Lopez, Oscar ;
Martin-Gil, Jesus ;
Hernandez-Navarro, Salvador ;
Martin-Ramos, Pablo ;
Sanchez-Arevalo, Francisco M. ;
Tamashausky, Albert V. ;
Merino-Sanchez, Cesar ;
Dante, Roberto C. .
CARBON, 2016, 98 :484-490
[8]   Comparison of the physical properties of epoxy-based composites filled with different types of carbon nanotubes for aeronautic applications [J].
De Vivo, Biagio ;
Lamberti, Patrizia ;
Tucci, Vincenzo ;
Guadagno, Liberata ;
Vertuccio, Luigi ;
Vittoria, Vittoria ;
Sorrentino, Andrea .
ADVANCES IN POLYMER TECHNOLOGY, 2012, 31 (03) :205-218
[9]   Determination of the electrical conductivity of carbon/carbon at high microwave frequencies [J].
Gradoni, G. ;
Micheli, D. ;
Primiani, V. Mariani ;
Moglie, F. ;
Marchetti, M. .
CARBON, 2013, 54 :76-85
[10]   A further comparison of graphene and thin metal layers for plasmonics [J].
He, Xiaoyong ;
Gao, Pingqi ;
Shi, Wangzhou .
NANOSCALE, 2016, 8 (19) :10388-10397