On best approximation by ridge functions

被引:83
作者
Maiorov, VE [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
D O I
10.1006/jath.1998.3304
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider best approximation of some function classes by the manifold M-n consisting of sums of n arbitrary ridge functions. It is proved that that deviation of the Sobolev class W-2(r, d) from the manifold M-n in the space L-2 behaves asymptotically as n(-r/(d-1)). (C) 1999 Academic Press.
引用
收藏
页码:68 / 94
页数:27
相关论文
共 28 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
[Anonymous], 1965, SPECIAL FUNCTIONS TH
[3]  
Bennett C., 1988, INTERPOLATION OPERAT
[4]  
DeVore R.A., 1997, Annals of Numerical Mathematics, V4, P261
[5]   OPTIMAL NONLINEAR APPROXIMATION [J].
DEVORE, RA ;
HOWARD, R ;
MICCHELLI, C .
MANUSCRIPTA MATHEMATICA, 1989, 63 (04) :469-478
[6]  
Devroye L., 1996, A probabilistic theory of pattern recognition
[7]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[8]  
Hilton P.J., 1960, Homology Theory
[9]  
KARPINSKI M, 1995, P 27 ACM S THEOR COM, P200
[10]   On approximation by ridge functions [J].
Kroo, A .
CONSTRUCTIVE APPROXIMATION, 1997, 13 (04) :447-460