Ascending rockets as macroscopic self-propelled Brownian oscillators

被引:2
|
作者
Srivastava, Nilabh [1 ]
Tkacik, Peter T. [1 ]
Keanini, Russell G. [1 ]
机构
[1] Univ N Carolina, Dept Mech Engn, Charlotte, NC 28223 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2012年 / 468卷 / 2148期
关键词
stochastic sounding rocket dynamics; nozzle side loads; Brownian oscillator; random mass flux damping; random wind loads; aerodynamic spring effect; BOUNDARY-LAYER SEPARATION; VARIABLE-MASS; SPACE; UNSTEADINESS; DYNAMICS; MOTION;
D O I
10.1098/rspa.2012.0273
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-fidelity numerical experiments and theoretical modelling are used to study the dynamics of a sounding-rocket-scale rocket, subject to altitude-dependent random wind and nozzle side loads and deterministic aerodynamic loading. This paper completes a series of studies that showed that Ornstein-Uhlenbeck (OU) rotational dynamics arise when random nozzle side loads dominate wind and aerodynamic loading. In contrast to the earlier work, this paper elucidates that under conditions where aerodynamic, wind and nozzle side loads are comparable, the rocket behaves as stochastic Brownian oscillator. The Brownian oscillator model allows straightforward interpretation of the complex rotational dynamics observed: three dynamical regimes-each characterized by differing balances between nozzle-side-load-induced torques, spring-like aerodynamic torques and mass flux damping torques-characterize rocket ascent. Further, the paper illuminates that in the limit where wind and aerodynamic loads are small, random mass flux variations exponentially amplify side-load-induced rotational stochasticity. In this practical limit, pitch/yaw dynamics are described by a randomly damped OU process; an exact solution of the associated Fokker-Planck equation can be obtained and used to compute, e.g. time-dependent pitch/yaw rate means and variances.
引用
收藏
页码:3965 / 3994
页数:30
相关论文
共 50 条
  • [41] Self-propelled drops on hydrophilic microfinned surfaces
    Zhou, Qianbing
    Jia, Zhihai
    Xiong, Xuejiao
    Wang, Jiao
    Dai, Xinran
    SURFACE INNOVATIONS, 2022, 11 (05) : 297 - 305
  • [42] Electrochemically powered self-propelled electrophoretic nanosubmarines
    Pumera, Martin
    NANOSCALE, 2010, 2 (09) : 1643 - 1649
  • [43] Inertial self-propelled particles in anisotropic environments
    Sprenger, Alexander R.
    Scholz, Christian
    Ldov, Anton
    Wittkowski, Raphael
    Loewen, Hartmut
    JETP LETTERS, 2023,
  • [44] Tuning the motility and directionality of self-propelled colloids
    Gomez-Solano, Juan Ruben
    Samin, Sela
    Lozano, Celia
    Ruedas-Batuecas, Pablo
    van Roij, Rene
    Bechinger, Clemens
    SCIENTIFIC REPORTS, 2017, 7
  • [45] Collective dynamics of dipolar self-propelled particles
    Vanesse, N.
    Opsomer, E.
    Lumay, G.
    Vandewalle, N.
    PHYSICAL REVIEW E, 2023, 108 (02)
  • [46] Dynamics and efficiency of a self-propelled, diffusiophoretic swimmer
    Sabass, Benedikt
    Seifert, Udo
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (06)
  • [47] Self-Propelled Multilayered Microrockets for Pollutants Purification
    Li, Tianlong
    Li, Longqiu
    Song, Wenping
    Wang, Lin
    Shao, Guangbin
    Zhang, Guangyu
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2015, 4 (10) : S3016 - S3019
  • [48] Nanoscale Biosensors Based on Self-Propelled Objects
    Jurado-Sanchez, Beatriz
    BIOSENSORS-BASEL, 2018, 8 (03):
  • [49] Self-propelled dropwise condensation on a gradient surface
    Deng, Zilong
    Zhang, Chengbin
    Shen, Chaoqun
    Cao, Jianguang
    Chen, Yongping
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 114 : 419 - 429
  • [50] Self-Propelled Janus Colloids in Shear Flow
    Si, Bishwa Ranjan
    Patel, Preet
    Mangal, Rahul
    LANGMUIR, 2020, 36 (40) : 11888 - 11898