Ascending rockets as macroscopic self-propelled Brownian oscillators

被引:2
|
作者
Srivastava, Nilabh [1 ]
Tkacik, Peter T. [1 ]
Keanini, Russell G. [1 ]
机构
[1] Univ N Carolina, Dept Mech Engn, Charlotte, NC 28223 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2012年 / 468卷 / 2148期
关键词
stochastic sounding rocket dynamics; nozzle side loads; Brownian oscillator; random mass flux damping; random wind loads; aerodynamic spring effect; BOUNDARY-LAYER SEPARATION; VARIABLE-MASS; SPACE; UNSTEADINESS; DYNAMICS; MOTION;
D O I
10.1098/rspa.2012.0273
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-fidelity numerical experiments and theoretical modelling are used to study the dynamics of a sounding-rocket-scale rocket, subject to altitude-dependent random wind and nozzle side loads and deterministic aerodynamic loading. This paper completes a series of studies that showed that Ornstein-Uhlenbeck (OU) rotational dynamics arise when random nozzle side loads dominate wind and aerodynamic loading. In contrast to the earlier work, this paper elucidates that under conditions where aerodynamic, wind and nozzle side loads are comparable, the rocket behaves as stochastic Brownian oscillator. The Brownian oscillator model allows straightforward interpretation of the complex rotational dynamics observed: three dynamical regimes-each characterized by differing balances between nozzle-side-load-induced torques, spring-like aerodynamic torques and mass flux damping torques-characterize rocket ascent. Further, the paper illuminates that in the limit where wind and aerodynamic loads are small, random mass flux variations exponentially amplify side-load-induced rotational stochasticity. In this practical limit, pitch/yaw dynamics are described by a randomly damped OU process; an exact solution of the associated Fokker-Planck equation can be obtained and used to compute, e.g. time-dependent pitch/yaw rate means and variances.
引用
收藏
页码:3965 / 3994
页数:30
相关论文
共 50 条
  • [11] Self-propelled torus colloids
    Wang, Jiyuan
    Huang, Mu-Jie
    Kapral, Raymond
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (01)
  • [12] Crystallization in a Dense Suspension of Self-Propelled Particles
    Bialke, Julian
    Speck, Thomas
    Loewen, Hartmut
    PHYSICAL REVIEW LETTERS, 2012, 108 (16)
  • [13] Crystallization of self-propelled particles on a spherical substrate
    Fang, Yan
    Wang, Chen
    Jiang, Hongyuan
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2019, 40 (10) : 1387 - 1398
  • [14] Random walks of intermittently self-propelled particles
    Datta, Agniva
    Beta, Carsten
    Grossmann, Robert
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [15] Binding self-propelled topological defects in active turbulence
    Thijssen, Kristian
    Doostmohammadi, Amin
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [16] Passive Janus particles are self-propelled in active nematics
    Loewe, Benjamin
    Shendruk, Tyler N.
    NEW JOURNAL OF PHYSICS, 2022, 24 (01)
  • [17] Recent advances in self-propelled particles
    Pan, Qi
    He, Yan
    SCIENCE CHINA-CHEMISTRY, 2017, 60 (10) : 1293 - 1304
  • [18] Crystallization of Self-Propelled Hard Discs
    Briand, G.
    Dauchot, O.
    PHYSICAL REVIEW LETTERS, 2016, 117 (09)
  • [19] Self-Propelled Nanoswimmers in Biomedical Sensing
    Chen, Qianfan
    Liang, Kang
    ADVANCED SENSOR RESEARCH, 2023, 2 (09):
  • [20] Magnetotactic Artificial Self-Propelled Nanojets
    Zhao, Guanjia
    Pumera, Martin
    LANGMUIR, 2013, 29 (24) : 7411 - 7415