Modelling polar wurtzite ZnS nanoparticles: the effect of sulphur supersaturation on size- and shape-dependent phase transformations

被引:8
作者
Feigl, Christopher A. [1 ,2 ]
Barnard, Amanda S. [2 ]
Russo, Salvy P. [1 ]
机构
[1] RMIT Univ, Sch Appl Sci, Melbourne, Vic 3001, Australia
[2] CSIRO Mat Sci & Engn, Virtual Nanosci Lab, Parkville, Vic 3052, Australia
基金
澳大利亚研究理事会;
关键词
OXYGEN PARTIAL-PRESSURE; PYRITE FES2 NANOCRYSTALS; STABILITY; SURFACE; PHOTOCATALYSIS; NANOSTRUCTURES; DENSITY; DEVICES;
D O I
10.1039/c2jm33758d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using ab initio thermodynamics and a shape-dependent thermodynamic model for the Gibbs free energy of a nanoparticle, we modelled wurtzite nanoparticles with polar surfaces to predict the equilibrium shape with respect to size, temperature and pressure. We explore the role of thermodynamics in shape selection, and compare the free energies of the equilibrium wurtzite shapes with zinc blende. The thermodynamically preferred wurtzite shapes are described, and conditions under which kinetics are likely to influence the shape are identified. We also describe experimental conditions which we believe to be conducive to the formation of specific wurtzite and zinc blende shapes, such as the supersaturation of sulphur in the synthesis environment and the terminating species of the polar surfaces. This study provides a valuable reference for determining exact experimental conditions for specific morphology targeted synthesis of ZnS nanomaterials and for ensuring their post-synthesis stability.
引用
收藏
页码:18992 / 18998
页数:7
相关论文
共 45 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   Experimental set up for determining the temperature-oxygen partial pressure conditions during synthesis of spinel oxide nanoparticles [J].
Aymes, D ;
Millot, N ;
Nivoix, V ;
Perriat, P ;
Gillot, B .
SOLID STATE IONICS, 1997, 101 :261-264
[3]   Shape and thermodynamic stability of pyrite FeS2 nanocrystals and nanorods [J].
Barnard, A. S. ;
Russo, S. P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (31) :11742-11746
[4]   A thermodynamic model for the shape and stability of twinned nanostructures [J].
Barnard, A. S. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (48) :24498-24504
[5]   Morphological and phase stability of zinc blende, amorphous and mixed core-shell ZnS nanoparticles [J].
Barnard, A. S. ;
Feigl, C. A. ;
Russo, S. P. .
NANOSCALE, 2010, 2 (10) :2294-2301
[6]   Modelling nanoscale FeS2 formation in sulfur rich conditions [J].
Barnard, A. S. ;
Russo, S. P. .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (21) :3389-3394
[7]   Morphological Stability of Pyrite FeS2 Nanocrystals in Water [J].
Barnard, A. S. ;
Russo, S. P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (14) :5376-5380
[8]   First principles and thermodynamic modeling of CdS surfaces and nanorods [J].
Barnard, Amanda S. ;
Xu, Huifang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (49) :18112-18117
[9]   An Environmentally Sensitive Phase Map of Titania Nanocrystals [J].
Barnard, Amanda S. ;
Xu, Huifang .
ACS NANO, 2008, 2 (11) :2237-2242
[10]   Nanohazards: Knowledge is our first defence [J].
Barnard, AS .
NATURE MATERIALS, 2006, 5 (04) :245-248