Electrochemistry of Q-Graphene

被引:38
作者
Randviir, Edward P. [1 ]
Brownson, Dale A. C. [1 ]
Gomez-Mingot, Maria [2 ,3 ]
Kampouris, Dimitrios K. [1 ]
Iniesta, Jesus [2 ,3 ]
Banks, Craig E. [1 ]
机构
[1] Manchester Metropolitan Univ, Fac Sci & Engn, Sch Sci & Environm, Div Chem & Environm Sci, Manchester M1 5GD, Lancs, England
[2] Univ Alicante, Dept Phys Chem, Alicante 03690, Spain
[3] Univ Alicante, Inst Electrochem, Alicante 03690, Spain
关键词
NANOTUBE-MODIFIED ELECTRODES; PLANE PYROLYTIC-GRAPHITE; CARBON-PASTE ELECTRODE; RAMAN-SPECTROSCOPY; ASCORBIC-ACID; CYCLIC VOLTAMMETRY; HYDROGEN-PEROXIDE; TRANSFER KINETICS; URIC-ACID; OXIDE;
D O I
10.1039/c2nr31823g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A newly synthesised type of graphene, Q-Graphene, has been physically and electrochemically characterised with Scanning and Transmission Electron Microscopy (SEM, TEM), X-ray Photoelectron Spectroscopy (XPS) and Cyclic Voltammetry (CV). Interpretation of SEM, TEM and XPS data reveal the material to consist of hollow carbon nanospheres of multi-layer graphene (viz. graphite), which exhibit a total oxygen content of ca. 36.0% (atomic weight via XPS). In addition to the carbon structures present, spherical magnesium oxide particles of <= 50 nm in diameter are abundantly present in the sample (ca. 16.2%). Interestingly, although the TEM/SEM images show macroporous carbon structures, Raman spectroscopy shows peaks typically characteristic of graphene, which suggests the material is highly heterogeneous and consists of many types of carbon allotropes. Q-Graphene is electrochemically characterised using both inner-sphere and outer-sphere electrochemical redox probes, namely potassium ferrocyanide(II), hexaammine-ruthenium(III) chloride and hexachloroiridate(III), in addition to the biologically relevant and electroactive analytes, norepinephrine, beta-nicotinamide adenine dinucleotide (NADH) and L-ascorbic acid. The electrochemical response of Q-Graphene is benchmarked against edge plane-and basal plane-pyrolytic graphite (EPPG and BPPG respectively), pristine graphene and graphite alternatives. Q-Graphene is found to exhibit fast electron transfer kinetics, likely due to its high proportion of folded edges and surface defects, exhibiting a response similar to that of EPPG - which exhibits fast electron transfer rates due to the high proportion of edge plane sites it possesses. Furthermore, we demonstrate that the specific oxygen content plays a pivotal role in dictating the observed electrochemical response, which is analyte dependant. Consequently there is potential for this new member of the graphene family to be beneficially utilised in various electrochemical applications.
引用
收藏
页码:6470 / 6480
页数:11
相关论文
共 69 条
[1]   Properties of graphene: a theoretical perspective [J].
Abergel, D. S. L. ;
Apalkov, V. ;
Berashevich, J. ;
Ziegler, K. ;
Chakraborty, Tapash .
ADVANCES IN PHYSICS, 2010, 59 (04) :261-482
[2]   Carbon nanotubes contain metal impurities which are responsible for the "electrocatalysis" seen at some nanotube-modified electrodes [J].
Banks, CE ;
Crossley, A ;
Salter, C ;
Wilkins, SJ ;
Compton, RG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (16) :2533-2537
[3]   New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite [J].
Banks, CE ;
Compton, RG .
ANALYST, 2006, 131 (01) :15-21
[4]   Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites [J].
Banks, CE ;
Davies, TJ ;
Wildgoose, GG ;
Compton, RG .
CHEMICAL COMMUNICATIONS, 2005, (07) :829-841
[5]   The transport limited currents at insonated electrodes [J].
Banks, CE ;
Compton, RG ;
Fisher, AC ;
Henley, LE .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (12) :3147-3152
[6]   Controlling voltammetric responses by electrode modification; using adsorbed acetone to switch graphite surfaces between adsorptive and diffusive modes [J].
Batchelor-McAuley, Christopher ;
Goncalves, Luis M. ;
Xiong, Linhongjia ;
Barros, Aquiles A. ;
Compton, Richard G. .
CHEMICAL COMMUNICATIONS, 2010, 46 (47) :9037-9039
[7]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[8]   ACTIVATION OF HIGHLY ORDERED PYROLYTIC-GRAPHITE FOR HETEROGENEOUS ELECTRON-TRANSFER - RELATIONSHIP BETWEEN ELECTROCHEMICAL PERFORMANCE AND CARBON MICROSTRUCTURE [J].
BOWLING, RJ ;
PACKARD, RT ;
MCCREERY, RL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (04) :1217-1223
[9]   Graphene electrochemistry: fundamental concepts through to prominent applications [J].
Brownson, Dale A. C. ;
Kampouris, Dimitrios K. ;
Banks, Craig E. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (21) :6944-6976
[10]   The electrochemical performance of graphene modified electrodes: An analytical perspective [J].
Brownson, Dale A. C. ;
Foster, Christopher W. ;
Banks, Craig E. .
ANALYST, 2012, 137 (08) :1815-1823