Properties of codes with two homogeneous weights

被引:11
作者
Byrne, Eimear [1 ,2 ]
Kiermaier, Michael [3 ]
Sneyd, Alison [1 ,2 ]
机构
[1] Univ Coll Dublin, Sch Math Sci, Dublin, Ireland
[2] Univ Coll Dublin, Claude Shannon Inst, Dublin, Ireland
[3] Univ Bayreuth, Math Inst, Bayreuth, Germany
基金
爱尔兰科学基金会;
关键词
Ring-linear code; Homogeneous weight; Weight distribution; Two-weight code; Character module; Strongly regular graph; Cayley graph; 2-WEIGHT CODES; FINITE RINGS;
D O I
10.1016/j.ffa.2012.01.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Delsarte showed that for any projective linear code over a finite field GF(p(r)) with two nonzero Hamming weights w(1) < w(2) there exist positive integers u and s such that w(1) = p(s)u and w(2) = p(s)(u + 1). Moreover, he showed that the additive group of such a code has a strongly regular Cayley graph. Here we show that for any regular projective linear code C over a finite Frobenius ring with two integral nonzero homogeneous weights w(1) < w(2) there is a positive integer d, a divisor of vertical bar C vertical bar, and positive integer u such that w(1) = du and w(2) = d(u + 1). This gives a new proof of the known result that any such code yields a strongly regular graph. We apply these results to existence questions on two-weight codes. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:711 / 727
页数:17
相关论文
共 27 条
[1]  
Brouwer A.E., TABLES PARAMETERS ST
[2]  
Byrne E., 2010, P 19 INT S MATH THEO
[3]   Ring geometries, two-weight codes, and strongly regular graphs [J].
Byrne, Eimear ;
Greferath, Marcus ;
Honold, Thomas .
DESIGNS CODES AND CRYPTOGRAPHY, 2008, 48 (01) :1-16
[4]  
Clark W.E., 1974, ABH MATH SEM HAMBURG, V39, P208
[5]  
Constantinescu I., 1997, PROBL PEREDACHI INF, V33, P147
[6]   Rings of order p5 part I.: Nonlocal rings [J].
Corbas, B ;
Williams, GD .
JOURNAL OF ALGEBRA, 2000, 231 (02) :677-690
[7]   Rings of order p5 part II.: Local rings [J].
Corbas, B ;
Williams, GD .
JOURNAL OF ALGEBRA, 2000, 231 (02) :691-704
[8]  
Delsarte Ph., 1972, Discrete Mathematics, V3, P47, DOI 10.1016/0012-365X(72)90024-6
[9]   NONCOMMUTATIVE RINGS OF ORDER P(4) [J].
DERR, JB ;
ORR, GF ;
PECK, PS .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1994, 97 (02) :109-116
[10]  
Godsil C., 1993, Algebraic Combinatorics, V6