Critical slowing down in one-dimensional maps and beyond

被引:2
作者
Hao, BL [1 ]
机构
[1] Fudan Univ, T Life Res Ctr, Shanghai 200433, Peoples R China
[2] Acad Sinica, Inst Theoret Phys, Beijing 100080, Peoples R China
关键词
period doubling attractor; fractal dimension; critical slowing down;
D O I
10.1007/s10955-005-8669-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This is a brief review on critical slowing down near the Feigenbaum period-doubling bifurcation points and its consequences. The slowing down of numerical convergence leads to an "operational" fractal dimension D=2/3 at a finite order bifurcation point. There is a cross-over to D-0=0.538... when the order goes to infinity, i.e., to the Feigenbaum accumulation point. The problem of whether there exists a "super-scaling" for the dimension spectrum D-q(W) that does not depend on the primitive word W underlying the period-n-tupling sequence seems to remain open.
引用
收藏
页码:749 / 757
页数:9
相关论文
共 29 条
[1]   A NEW UNIVERSALITY FOR FRACTAL DIMENSIONS OF FEIGENBAUM-TYPE ATTRACTORS [J].
CAO, KF ;
LIU, RL ;
PENG, SL .
PHYSICS LETTERS A, 1989, 136 (4-5) :213-215
[2]   UNIVERSAL SCALING OF GENERALIZED DIMENSIONS ON CRITICAL STRANGE SETS [J].
CAO, KF ;
PENG, SL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (03) :589-599
[3]  
CHRISTIANSEN P, 1990, J PHYS A, V23, pL713
[4]  
COA KF, 1988, THESIS DEP PHYS YUNN
[5]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[6]   UNIVERSAL METRIC PROPERTIES OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1979, 21 (06) :669-706
[7]   JUMPING PARTICLE MODEL - CRITICAL SLOWING DOWN NEAR THE BIFURCATION POINTS [J].
FRANASZEK, M ;
PIERANSKI, P .
CANADIAN JOURNAL OF PHYSICS, 1985, 63 (04) :488-493
[8]   MEASURING THE STRANGENESS OF STRANGE ATTRACTORS [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICA D, 1983, 9 (1-2) :189-208
[9]   ON THE HAUSDORFF DIMENSION OF FRACTAL ATTRACTORS [J].
GRASSBERGER, P .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (01) :173-179
[10]   SOME MORE UNIVERSAL SCALING LAWS FOR CRITICAL MAPPINGS [J].
GRASSBERGER, P ;
SCHEUNERT, M .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (04) :697-717