Redox signaling mediates the expression of a sulfate-deprivation-inducible microRNA395 in Arabidopsis

被引:75
作者
Jagadeeswaran, Guru [1 ]
Li, Yong-Fang [1 ]
Sunkar, Ramanjulu [1 ]
机构
[1] Oklahoma State Univ, Dept Biochem & Mol Biol, Stillwater, OK 74078 USA
基金
美国国家科学基金会;
关键词
Arabidopsis thaliana; microRNA395; oxidative stress; redox signaling; sulfate deprivation; SMALL RNAS; SULFUR METABOLISM; REGULATED MICRORNAS; PLANT MICRORNAS; SACRED LOTUS; GLUTATHIONE; IDENTIFICATION; THIOREDOXIN; GENES; ASSIMILATION;
D O I
10.1111/tpj.12364
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
MicroRNA395 (miR395) is a conserved miRNA that targets a low-affinity sulfate transporter (AST68) and three ATP sulfurylases (APS1, APS3 and APS4) in higher plants. In this study, At2g28780 was confirmed as another target of miR395 in Arabidopsis. Interestingly, several dicots contained genes homologous to At2g28780 and a cognate miR395 complementary site but possess a gradient of mismatches at the target site. It is well established that miR395 is induced during S deprivation in Arabidopsis; however, the signaling pathways that mediate this regulation are unknown. Several findings in the present study demonstrate that redox signaling plays an important role in induction of miR395 during S deprivation. These include the following results: (i) glutathione (GSH) supplementation suppressed miR395 induction in S-deprived plants (ii) miR395 is induced in Arabidopsis seedlings exposed to Arsenate or Cu2+, which induces oxidative stress (iii), S deprivation-induced oxidative stress, and (iv) compromised induction of miR395 during S deprivation in cad2 mutant (deficient in GSH biosynthesis) that is defective in glutaredoxin-dependent redox signaling and ntra/ntrb (defective in thioredoxin reductases a and b) double mutants that are defective in thioredoxin-dependent redox signaling. Collectively, these findings strongly support the involvement of redox signaling in inducing the expression of miR395 during S deprivation in Arabidopsis.
引用
收藏
页码:85 / 96
页数:12
相关论文
共 61 条
[1]   Computational prediction of miRNAs in Arabidopsis thaliana [J].
Adai, A ;
Johnson, C ;
Mlotshwa, S ;
Archer-Evans, S ;
Manocha, V ;
Vance, V ;
Sundaresan, V .
GENOME RESEARCH, 2005, 15 (01) :78-91
[2]  
Allen E, 2005, CELL, V121, P207, DOI 10.1016/j.cell.2005.04.004
[3]   Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana [J].
Allen, E ;
Xie, ZX ;
Gustafson, AM ;
Sung, GH ;
Spatafora, JW ;
Carrington, JC .
NATURE GENETICS, 2004, 36 (12) :1282-1290
[4]   pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a MicroRNA399 target gene [J].
Aung, Kyaw ;
Lin, Shu-I ;
Wu, Chia-Chune ;
Huang, Yu-Ting ;
Su, Chun-Lin ;
Chiou, Tzyy-Jen .
PLANT PHYSIOLOGY, 2006, 141 (03) :1000-1011
[5]   Classification and Comparison of Small RNAs from Plants [J].
Axtell, Michael J. .
ANNUAL REVIEW OF PLANT BIOLOGY, VOL 64, 2013, 64 :137-159
[6]   PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants [J].
Bari, Rajendra ;
Pant, Bikram Datt ;
Stitt, Mark ;
Scheible, Wolf-Ruediger .
PLANT PHYSIOLOGY, 2006, 141 (03) :988-999
[7]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[8]   microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis [J].
Beauclair, Linda ;
Yu, Agnes ;
Bouche, Nicolas .
PLANT JOURNAL, 2010, 62 (03) :454-462
[9]   Plant microRNAs at a glance [J].
Chen, Xuemei .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2010, 21 (08) :781-781
[10]   Regulation of phosphate homeostasis by microRNA in Arabidopsis [J].
Chiou, TJ ;
Aung, K ;
Lin, SI ;
Wu, CC ;
Chiang, SF ;
Su, CL .
PLANT CELL, 2006, 18 (02) :412-421