Thin film metal sensors in fusion bonded glass chips for high-pressure microfluidics

被引:11
作者
Andersson, Martin [1 ]
Ek, Johan [1 ,2 ]
Hedman, Ludvig [1 ,2 ]
Johansson, Fredrik [1 ,2 ]
Sehlstedt, Viktor [1 ,2 ]
Stocklassa, Jesper [1 ,2 ]
Snogren, Par [1 ,2 ]
Pettersson, Victor [1 ,2 ]
Larsson, Jonas [1 ,2 ]
Vizuete, Olivier [1 ,2 ]
Hjort, Klas [1 ]
Klintberg, Lena [1 ]
机构
[1] Uppsala Univ, Dept Engn Sci, Box 534, S-75121 Uppsala, Sweden
[2] Uppsala Univ, Adv Level Undergrad Project Course Micro & Nanote, S-75105 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
supercritical carbon dioxide; high pressure microfluidics; integrated electrodes; temperature sensing; flow sensing; glass; INTEGRATED ELECTRODES; SUPERCRITICAL FLUIDS; FLOW SENSORS; FABRICATION; DEVICE;
D O I
10.1088/0960-1317/27/1/015018
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High-pressure microfluidics offers fast analyses of thermodynamic parameters for compressed process solvents. However, microfluidic platforms handling highly compressible supercritical CO2 are difficult to control, and on-chip sensing would offer added control of the devices. Therefore, there is a need to integrate sensors into highly pressure tolerant glass chips. In this paper, thin film Pt sensors were embedded in shallow etched trenches in a glass wafer that was bonded with another glass wafer having microfluidic channels. The devices having sensors integrated into the flow channels sustained pressures up to 220 bar, typical for the operation of supercritical CO2. No leakage from the devices could be found. Integrated temperature sensors were capable of measuring local decompression cooling effects and integrated calorimetric sensors measured flow velocities over the range 0.5-13.8 mm s(-1). By this, a better control of high-pressure microfluidic platforms has been achieved.
引用
收藏
页数:10
相关论文
共 39 条
[1]   Fracture strength of glass chips for high-pressure microfluidics [J].
Andersson, Martin ;
Hjort, Klas ;
Klintberg, Lena .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2016, 26 (09)
[2]   Supercritical extraction of lignin oxidation products in a microfluidic device [J].
Assmann, Nora ;
Werhan, Holger ;
Ladosz, Agnieszka ;
von Rohr, Philipp Rudolf .
CHEMICAL ENGINEERING SCIENCE, 2013, 99 :177-183
[3]   Fully integrated on-chip electrochemical detection for capillary electrophoresis in a microfabricated device [J].
Baldwin, RP ;
Roussel, TJ ;
Crain, MM ;
Bathlagunda, V ;
Jackson, DJ ;
Gullapalli, J ;
Conklin, JA ;
Pai, R ;
Naber, JF ;
Walsh, KM ;
Keynton, RS .
ANALYTICAL CHEMISTRY, 2002, 74 (15) :3690-3697
[4]   Flow of CO2-ethanol and of CO2-methanol in a non-adiabatic microfluidic T-junction at high pressures [J].
Blanch-Ojea, R. ;
Tiggelaar, R. M. ;
Pallares, J. ;
Grau, F. X. ;
Gardeniers, J. G. E. .
MICROFLUIDICS AND NANOFLUIDICS, 2012, 12 (06) :927-940
[5]   Fluid flow through nanometer-scale channels [J].
Cheng, JT ;
Giordano, N .
PHYSICAL REVIEW E, 2002, 65 (03) :1-031206
[6]   Experimental Methods for Phase Equilibria at High Pressures [J].
Dohrn, Ralf ;
Fonseca, Jose M. S. ;
Peper, Stephanie .
ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 3, 2012, 3 :343-367
[7]   A molecular emission detector on a chip employing a direct current microplasma [J].
Eijkel, JCT ;
Stoeri, H ;
Manz, A .
ANALYTICAL CHEMISTRY, 1999, 71 (14) :2600-2606
[8]   Viscosity of pure carbon dioxide at supercritical region: Measurement and correlation approach [J].
Heidaryan, Ehsan ;
Hatami, Tahmas ;
Rahimi, Masoud ;
Moghadasi, Jamshid .
JOURNAL OF SUPERCRITICAL FLUIDS, 2011, 56 (02) :144-151
[9]   Fabrication of microfluidic networks with integrated electrodes [J].
Hermes, DC ;
Heuser, T ;
van der Wouden, EJ ;
Gardeniers, JGE ;
van den Berg, A .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2006, 12 (05) :436-440
[10]   Wafer-scale thin encapsulated two-dimensional nanochannels and its application toward visualization of single molecules [J].
Hoang, H. T. ;
Tong, H. D. ;
Segers-Nolten, I. M. ;
Tas, N. R. ;
Subramaniam, V. ;
Elwenspoek, M. C. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 367 :455-459