Self-similar solutions of the p-Laplace heat equation: the case when p > 2

被引:10
作者
Bidaut-Veron, Marie Franoise [1 ]
机构
[1] Fac Sci, UMR 6083, CNRS, Lab Math & Phys Theor, F-37200 Tours, France
关键词
D O I
10.1017/S0308210507000509
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We, study the self-similar solutions of the equation ut - div (vertical bar del u vertical bar(p-2)del u) = 0, in R-N, when p > 2. We make a complete study of the existence and possible uniqueness of solutions of the form u(x,t) = (+/-t)(-alpha/beta)omega((+/-t)(-1 beta)vertical bar x vertical bar) of any sign, regular or singular at x = 0. Among them we find solutions with all expanding Compact support or a shrinking hole (for t > 0), or a spreading compact support a focusing hole (for t < 0). When t < 0, we show the existence of positive solutions oscillating around the particular Solution U(x,t) = C-N,C-p(vertical bar x vertical bar(p)/(-t)(1/(p-2)).
引用
收藏
页码:1 / 43
页数:43
相关论文
共 10 条
  • [1] [Anonymous], TEXTS APPL MATH
  • [2] [Anonymous], 1999, TEXTS APPL MATH
  • [3] Aronson DG, 1998, COMMUN PART DIFF EQ, V23, P307
  • [4] Aronson DG., 1993, Euro. J. Appl. Math, V4, P65, DOI [10.1017/S095679250000098X, DOI 10.1017/S095679250000098X]
  • [5] Self-similar solutions of the p-laplace heat equation:: The fast diffusion case
    Bidaut-Veron, Marie Francoise
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2006, 227 (02) : 201 - 269
  • [6] Bidaut-Véron MF, 2006, ADV NONLINEAR STUD, V6, P69
  • [7] ON GENERAL-PROPERTIES OF QUADRATIC SYSTEMS
    CHICONE, C
    TIAN, JH
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (03) : 167 - 178
  • [8] GIL O, 1997, ADV DIFFERENTIAL EQU, V2, P183
  • [9] SINGULAR SOLUTIONS OF SOME NONLINEAR PARABOLIC EQUATIONS
    KAMIN, S
    VAZQUEZ, JL
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1992, 59 : 51 - 74
  • [10] KUZNETZOV YA, 1995, APPL MATH SCI, V112