Self-similar solutions of the p-Laplace heat equation: the case when p > 2

被引:10
作者
Bidaut-Veron, Marie Franoise [1 ]
机构
[1] Fac Sci, UMR 6083, CNRS, Lab Math & Phys Theor, F-37200 Tours, France
关键词
D O I
10.1017/S0308210507000509
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We, study the self-similar solutions of the equation ut - div (vertical bar del u vertical bar(p-2)del u) = 0, in R-N, when p > 2. We make a complete study of the existence and possible uniqueness of solutions of the form u(x,t) = (+/-t)(-alpha/beta)omega((+/-t)(-1 beta)vertical bar x vertical bar) of any sign, regular or singular at x = 0. Among them we find solutions with all expanding Compact support or a shrinking hole (for t > 0), or a spreading compact support a focusing hole (for t < 0). When t < 0, we show the existence of positive solutions oscillating around the particular Solution U(x,t) = C-N,C-p(vertical bar x vertical bar(p)/(-t)(1/(p-2)).
引用
收藏
页码:1 / 43
页数:43
相关论文
共 10 条
[1]  
[Anonymous], TEXTS APPL MATH
[2]  
[Anonymous], 1999, TEXTS APPL MATH
[3]  
Aronson DG, 1998, COMMUN PART DIFF EQ, V23, P307
[4]  
Aronson DG., 1993, Euro. J. Appl. Math, V4, P65, DOI [10.1017/S095679250000098X, DOI 10.1017/S095679250000098X]
[5]   Self-similar solutions of the p-laplace heat equation:: The fast diffusion case [J].
Bidaut-Veron, Marie Francoise .
PACIFIC JOURNAL OF MATHEMATICS, 2006, 227 (02) :201-269
[6]  
Bidaut-Véron MF, 2006, ADV NONLINEAR STUD, V6, P69
[7]   ON GENERAL-PROPERTIES OF QUADRATIC SYSTEMS [J].
CHICONE, C ;
TIAN, JH .
AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (03) :167-178
[8]  
GIL O, 1997, ADV DIFFERENTIAL EQU, V2, P183
[9]   SINGULAR SOLUTIONS OF SOME NONLINEAR PARABOLIC EQUATIONS [J].
KAMIN, S ;
VAZQUEZ, JL .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 59 :51-74
[10]  
KUZNETZOV YA, 1995, APPL MATH SCI, V112