A blueprint for demonstrating quantum supremacy with superconducting qubits

被引:337
作者
Neill, C. [1 ]
Roushan, P. [2 ]
Kechedzhi, K. [3 ,4 ]
Boixo, S. [2 ]
Isakov, S. V. [2 ]
Smelyanskiy, V. [2 ]
Megrant, A. [2 ]
Chiaro, B. [1 ]
Dunsworth, A. [1 ]
Arya, K. [2 ]
Barends, R. [2 ]
Burkett, B. [2 ]
Chen, Y. [2 ]
Chen, Z. [1 ]
Fowler, A. [2 ]
Foxen, B. [1 ]
Giustina, M. [2 ]
Graff, R. [2 ]
Jeffrey, E. [2 ]
Huang, T. [2 ]
Kelly, J. [2 ]
Klimov, P. [2 ]
Lucero, E. [2 ]
Mutus, J. [2 ]
Neeley, M. [2 ]
Quintana, C. [1 ]
Sank, D. [2 ]
Vainsencher, A. [2 ]
Wenner, J. [1 ]
White, T. C. [2 ]
Neven, H. [2 ]
Martinis, J. M. [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Google, Santa Barbara, CA 93117 USA
[3] NASA, Ames Res Ctr, Quantum Artificial Intelligence Lab QuAIL, Moffett Field, CA 94035 USA
[4] Univ Space Res Assoc, Mountain View, CA 94043 USA
关键词
SYSTEMS;
D O I
10.1126/science.aao4309
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert space. As the number of qubits increases, the system continues to explore the exponentially growing number of states. Extending these results to a system of 50 qubits has the potential to address scientific questions that are beyond the capabilities of any classical computer.
引用
收藏
页码:195 / 198
页数:4
相关论文
共 50 条
[41]   Observation of Strong and Weak Thermalization in a Superconducting Quantum Processor [J].
Chen, Fusheng ;
Sun, Zheng-Hang ;
Gong, Ming ;
Zhu, Qingling ;
Zhang, Yu-Ran ;
Wu, Yulin ;
Ye, Yangsen ;
Zha, Chen ;
Li, Shaowei ;
Guo, Shaojun ;
Qian, Haoran ;
Huang, He-Liang ;
Yu, Jiale ;
Deng, Hui ;
Rong, Hao ;
Lin, Jin ;
Xu, Yu ;
Sun, Lihua ;
Guo, Cheng ;
Li, Na ;
Liang, Futian ;
Peng, Cheng-Zhi ;
Fan, Heng ;
Zhu, Xiaobo ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2021, 127 (02)
[42]   Quantum bath suppression in a superconducting circuit by immersion cooling [J].
Lucas, M. ;
Danilov, A. V. ;
Levitin, L. V. ;
Jayaraman, A. ;
Casey, A. J. ;
Faoro, L. ;
Tzalenchuk, A. Ya. ;
Kubatkin, S. E. ;
Saunders, J. ;
de Graaf, S. E. .
NATURE COMMUNICATIONS, 2023, 14 (01)
[43]   Nanomechanical manipulation of superconducting charge-qubit quantum networks [J].
Radic, D. ;
Gorelik, L. Y. ;
Kulinich, S. I. ;
Shekhter, R. I. .
PHYSICA B-CONDENSED MATTER, 2024, 684
[44]   Superconducting quantum criticality in three-dimensional Luttinger semimetals [J].
Boettcher, Igor ;
Herbut, Igor F. .
PHYSICAL REVIEW B, 2016, 93 (20)
[45]   Energy dynamics, heat production and heat-work conversion with qubits: toward the development of quantum machines [J].
Arrachea, Liliana .
REPORTS ON PROGRESS IN PHYSICS, 2023, 86 (03)
[47]   Strongly correlated quantum walks with a 12-qubit superconducting processor [J].
Yan, Zhiguang ;
Zhang, Yu-Ran ;
Gong, Ming ;
Wu, Yulin ;
Zheng, Yarui ;
Li, Shaowei ;
Wang, Can ;
Liang, Futian ;
Lin, Jin ;
Xu, Yu ;
Guo, Cheng ;
Sun, Lihua ;
Peng, Cheng-Zhi ;
Xia, Keyu ;
Deng, Hui ;
Rong, Hao ;
You, J. Q. ;
Nori, Franco ;
Fan, Heng ;
Zhu, Xiaobo ;
Pan, Jian-Wei .
SCIENCE, 2019, 364 (6442) :753-+
[48]   Scaling up Superconducting Quantum Computers With Cryogenic RF-Photonics [J].
Joshi, Sanskriti ;
Moazeni, Sajjad .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (01) :166-175
[49]   The Roles of Potential Symmetry in Transport Properties of Superconducting Quantum Point Contacts [J].
Nurbawono, Argo ;
Feng, Yuan Ping ;
Zhang, Chun .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2010, 7 (11) :2448-2452
[50]   Feedback-induced nonlinearity and superconducting on-chip quantum optics [J].
Liu, Zhong-Peng ;
Wang, Hui ;
Zhang, Jing ;
Liu, Yu-xi ;
Wu, Re-Bing ;
Li, Chun-Wen ;
Nori, Franco .
PHYSICAL REVIEW A, 2013, 88 (06)