A blueprint for demonstrating quantum supremacy with superconducting qubits

被引:337
作者
Neill, C. [1 ]
Roushan, P. [2 ]
Kechedzhi, K. [3 ,4 ]
Boixo, S. [2 ]
Isakov, S. V. [2 ]
Smelyanskiy, V. [2 ]
Megrant, A. [2 ]
Chiaro, B. [1 ]
Dunsworth, A. [1 ]
Arya, K. [2 ]
Barends, R. [2 ]
Burkett, B. [2 ]
Chen, Y. [2 ]
Chen, Z. [1 ]
Fowler, A. [2 ]
Foxen, B. [1 ]
Giustina, M. [2 ]
Graff, R. [2 ]
Jeffrey, E. [2 ]
Huang, T. [2 ]
Kelly, J. [2 ]
Klimov, P. [2 ]
Lucero, E. [2 ]
Mutus, J. [2 ]
Neeley, M. [2 ]
Quintana, C. [1 ]
Sank, D. [2 ]
Vainsencher, A. [2 ]
Wenner, J. [1 ]
White, T. C. [2 ]
Neven, H. [2 ]
Martinis, J. M. [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Google, Santa Barbara, CA 93117 USA
[3] NASA, Ames Res Ctr, Quantum Artificial Intelligence Lab QuAIL, Moffett Field, CA 94035 USA
[4] Univ Space Res Assoc, Mountain View, CA 94043 USA
关键词
SYSTEMS;
D O I
10.1126/science.aao4309
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert space. As the number of qubits increases, the system continues to explore the exponentially growing number of states. Extending these results to a system of 50 qubits has the potential to address scientific questions that are beyond the capabilities of any classical computer.
引用
收藏
页码:195 / 198
页数:4
相关论文
共 50 条
[31]   Maximal tripartite entanglement between singlet-triplet qubits in quantum dots [J].
Hiltunen, Tuukka ;
Harju, Ari .
PHYSICAL REVIEW B, 2014, 89 (11)
[32]   Toward Scalable Superconducting Quantum Computer Implementation [J].
Tabuchi, Yutaka ;
Tamate, Shuhei ;
Nakamura, Yasunobu .
IEICE TRANSACTIONS ON ELECTRONICS, 2019, E102C (03) :212-216
[33]   Pure dephasing of double-quantum-dot charge qubits in freestanding slabs [J].
Liao, Y. Y. ;
Chen, Y. N. .
PHYSICAL REVIEW B, 2010, 81 (15)
[34]   The dynamics of quantum correlation with two controlled qubits under classical dephasing environment [J].
Li, Jun-Qi ;
Cui, Xin-Lin ;
Liang, J. -Q. .
ANNALS OF PHYSICS, 2015, 354 :365-374
[35]   Preserving photon qubits in an unknown quantum state with Knill Dynamical Decoupling - Towards an all optical quantum memory [J].
Gupta, Manish K. ;
Navarro, Erik J. ;
Moulder, Todd A. ;
Mueller, Jason D. ;
Balouchi, Ashkan ;
Brown, Katherine L. ;
Lee, Hwang ;
Dowling, Jonathan P. .
ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION VIII, 2015, 9377
[36]   Distinguishing quantum states using time-traveling qubits in the presence of thermal environments [J].
Dziewit, Bartosz ;
Richter, Monika ;
Dajka, Jerzy .
PHYSICAL REVIEW A, 2017, 95 (03)
[37]   Dissipative quantum entanglement dynamics of two and three qubits due to the dynamical Lamb effect [J].
Amico, Mirko ;
Berman, Oleg L. ;
Kezerashvili, Roman Ya .
PHYSICAL REVIEW A, 2018, 98 (04)
[38]   Quantum correlations between distant qubits conveyed by large-S spin chains [J].
Nuzzi, Davide ;
Cuccoli, Alessandro ;
Vaia, Ruggero ;
Verrucchi, Paola .
PHYSICAL REVIEW B, 2017, 96 (05)
[39]   Enhancing quantum utility: Simulating large-scale quantum spin chains on superconducting quantum computers [J].
Chowdhury, Talal Ahmed ;
Yu, Kwangmin ;
Shamim, Mahmud Ashraf ;
Kabir, M. L. ;
Sufian, Raza Sabbir .
PHYSICAL REVIEW RESEARCH, 2024, 6 (03)
[40]   Quantum and wave dynamical chaos in superconducting microwave billiards [J].
Dietz, B. ;
Richter, A. .
CHAOS, 2015, 25 (09)