Simple LU and QR based non-orthogonal matrix joint diagonalization

被引:0
作者
Afsari, B [1 ]
机构
[1] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Appl Math, College Pk, MD 20742 USA
来源
INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS | 2006年 / 3889卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A class of simple Jacobi-type algorithms for non-orthogonal matrix joint diagonalization based on the LU or QR factorization is introduced. By appropriate parametrization of the underlying manifolds, i.e. using triangular and orthogonal Jacobi matrices we replace a high dimensional minimization problem by a sequence of simple one dimensional minimization problems. In addition, a new scale-invariant cost function for non-orthogonal joint diagonalization is employed. These algorithms are step-size free. Numerical simulations demonstrate the efficiency of the methods.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 8 条