Theorems of ErdAs-Ko-Rado type in geometrical settings

被引:6
作者
De Boeck, Maarten [1 ]
Storme, Leo [1 ]
机构
[1] Dept Math, B-9000 Ghent, Belgium
关键词
Erdos-Ko-Rado theorem; finite sets; finite vector spaces; finite classical polar spaces; INTERSECTING FAMILIES; DUAL WIDTH; ERDOS; SYSTEMS; SUBSETS; PROOF;
D O I
10.1007/s11425-013-4676-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The original ErdAs-Ko-Rado problem has inspired much research. It started as a study on sets of pairwise intersecting k-subsets in an n-set, then it gave rise to research on sets of pairwise non-trivially intersecting k-dimensional vector spaces in the vector space V (n, q) of dimension n over the finite field of order q, and then research on sets of pairwise non-trivially intersecting generators and planes in finite classical polar spaces. We summarize the main results on the ErdAs-Ko-Rado problem in these three settings, mention the ErdAs-Ko-Rado problem in other related settings, and mention open problems for future research.
引用
收藏
页码:1333 / 1348
页数:16
相关论文
共 42 条
[1]  
[Anonymous], THESIS U WATERLOO WA
[2]  
[Anonymous], 1991, General Galois Geometries
[3]   On the chromatic number of q-Kneser graphs [J].
Blokhuis, A. ;
Brouwer, A. E. ;
Szonyi, T. .
DESIGNS CODES AND CRYPTOGRAPHY, 2012, 65 (03) :187-197
[4]  
Blokhuis A, 2010, ELECTRON J COMB, V17
[5]   On q-analogues and stability theorems [J].
Blokhuis A. ;
Brouwer A. ;
Szonyi T. ;
Weiner Z. .
Journal of Geometry, 2011, 101 (1-2) :31-50
[6]   CLASSIFICATION AND ANALYSIS OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH 2 ASSOCIATE CLASSES [J].
BOSE, RC ;
SHIMAMOTO, T .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1952, 47 (258) :151-184
[7]  
BROUWER A, 1992, EUR J COMBIN, V13, P71
[8]  
Brouwer A., 1989, Distance-Regular Graphs, DOI [10.1007/978-3-642-74341-2, DOI 10.1007/978-3-642-74341-2]
[9]   Width and dual width of subsets in polynomial association schemes [J].
Brouwer, AE ;
Godsil, CD ;
Koolen, JH ;
Martin, WJ .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 102 (02) :255-271
[10]   Intersecting families of permutations [J].
Cameron, PJ ;
Ku, CY .
EUROPEAN JOURNAL OF COMBINATORICS, 2003, 24 (07) :881-890