Data-driven surrogates for high dimensional models using Gaussian process regression on the Grassmann manifold

被引:44
作者
Giovanis, D. G. [1 ]
Shields, M. D. [1 ]
机构
[1] Johns Hopkins Univ, Dept Civil & Syst Engn, Baltimore, MD 21218 USA
关键词
Grassmann manifold; Spectral clustering; Gaussian process regression; Machine learning; Nonlinear projection; Interpolation; GENERALIZED POLYNOMIAL CHAOS; UNCERTAINTY QUANTIFICATION; STOCHASTIC COLLOCATION; DIFFERENTIAL-EQUATIONS; FORM UNCERTAINTIES; REDUCTION; DEFORMATION; EIGENMAPS; DYNAMICS; GEOMETRY;
D O I
10.1016/j.cma.2020.113269
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper introduces a surrogate modeling scheme based on Grassmannian manifold learning to be used for cost-efficient predictions of high-dimensional stochastic systems. The method exploits subspace-structured features of each solution by projecting it onto a Grassmann manifold. This point-wise linear dimensionality reduction harnesses the structural information to assess the similarity between solutions at different points in the input parameter space. The method utilizes a solution clustering approach in order to identify regions of the parameter space over which solutions are sufficiently similarly such that they can be interpolated on the Grassmannian. In this clustering, the reduced-order solutions are partitioned into disjoint clusters on the Grassmann manifold using the eigen-structure of properly defined Grassmannian kernels and, the Karcher mean of each cluster is estimated. Then, the points in each cluster are projected onto the tangent space with origin at the corresponding Karcher mean using the exponential mapping. For each cluster, a Gaussian process regression model is trained that maps the input parameters of the system to the reduced solution points of the corresponding cluster projected onto the tangent space. Using this Gaussian process model, the full-field solution can be efficiently predicted at any new point in the parameter space. In certain cases, the solution clusters will span disjoint regions of the parameter space. In such cases, for each of the solution clusters we utilize a second, density-based spatial clustering to group their corresponding input parameter points in the Euclidean space. The proposed method is applied to two numerical examples. The first is a nonlinear stochastic ordinary differential equation with uncertain initial conditions where the surrogate is used to predict the time history solution. The second involves modeling of plastic deformation in a model amorphous solid using the Shear Transformation Zone theory of plasticity, where the proposed surrogate is used to predict the full strain field of a material specimen under large shear strains. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:26
相关论文
共 72 条
[1]   Riemannian geometry of Grassmann manifolds with a view on algorithmic computation [J].
Absil, PA ;
Mahony, R ;
Sepulchre, R .
ACTA APPLICANDAE MATHEMATICAE, 2004, 80 (02) :199-220
[2]   Interpolation method for adapting reduced-order models and application to aeroelasticity [J].
Amsallem, David ;
Farhat, Charbel .
AIAA JOURNAL, 2008, 46 (07) :1803-1813
[3]   AN ONLINE METHOD FOR INTERPOLATING LINEAR PARAMETRIC REDUCED-ORDER MODELS [J].
Amsallem, David ;
Farhat, Charbel .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05) :2169-2198
[4]  
[Anonymous], 1991, Graph theory, combinatorics, and applications, DOI DOI 10.1016/J.CAMWA.2004.05.005
[5]  
[Anonymous], P 25 INT C MACH LEAR
[6]   A stochastic collocation method for elliptic partial differential equations with random input data [J].
Babuska, Ivo ;
Nobile, Fabio ;
Tempone, Raul .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) :1005-1034
[7]  
Begelfor E., 2006, P IEEE C COMP VIS PA, V2, P2087, DOI DOI 10.1109/CVPR.2006.50
[8]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[9]   A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems [J].
Benner, Peter ;
Gugercin, Serkan ;
Willcox, Karen .
SIAM REVIEW, 2015, 57 (04) :483-531
[10]   Adaptive sparse polynomial chaos expansion based on least angle regression [J].
Blatman, Geraud ;
Sudret, Bruno .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (06) :2345-2367