Transmission eigenvalues and thermoacoustic tomography

被引:10
作者
Finch, David [1 ]
Hickmann, Kyle S. [2 ]
机构
[1] Oregon State Univ, Dept Math, Corvallis, OR 97331 USA
[2] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
基金
美国国家科学基金会;
关键词
SPHERICALLY SYMMETRICAL SPEED; RECONSTRUCTION; RECOVERY;
D O I
10.1088/0266-5611/29/10/104016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The spectrum of the interior transmission problem is related to the unique determination of the acoustic properties of a body in thermoacoustic imaging. Under a non-trapping hypothesis, we show that sparsity of the interior transmission spectrum implies a range separation condition for the thermoacoustic operator. In odd dimensions greater than or equal to 3, we prove that the interior transmission spectrum for a pair of radially symmetric non-trapping sound speeds is countable, and conclude that the ranges of the associated thermoacoustic maps have only trivial intersection.
引用
收藏
页数:11
相关论文
共 25 条
[11]   Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography [J].
Jiang, HB ;
Yuan, Z ;
Gu, XJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2006, 23 (04) :878-888
[12]   Thermoacoustic tomography with correction for acoustic speed variations [J].
Jin, Xing ;
Wang, Lihong V. .
PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (24) :6437-6448
[13]   ON THE UNIQUENESS OF A SPHERICALLY SYMMETRICAL SPEED OF SOUND FROM TRANSMISSION EIGENVALUES [J].
MCLAUGHLIN, JR ;
POLYAKOV, PL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (02) :351-382
[14]   RECONSTRUCTION OF A SPHERICALLY SYMMETRICAL SPEED OF SOUND [J].
MCLAUGHLIN, JR ;
POLYAKOV, PL ;
SACKS, PE .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (05) :1203-1223
[15]  
Somasundaram M., 1995, THESIS RENSSELAER PO
[16]  
Stefanov P, 2013, T AM MATH S IN PRESS
[17]  
Stefanov P, 2012, ARXIV12116217
[18]   Thermoacoustic tomography with variable sound speed [J].
Stefanov, Plamen ;
Uhlmann, Gunther .
INVERSE PROBLEMS, 2009, 25 (07)
[19]  
Vainberg BR., 1989, Asymptotic Methods in Equations of Mathematical Physics
[20]  
Vainberg Vai75 Boris R., 1975, Russian Math. Surveys, V30, P1, DOI 10.1070/RM1975v030n02ABEH001406