Computational screening of metal-organic frameworks with open copper sites for hydrogen purification

被引:18
|
作者
Chiau Junior, Manuel J. [1 ]
Wang, Yuguo [1 ]
Wu, Xuanjun [1 ]
Cai, Weiquan [2 ,3 ]
机构
[1] Wuhan Univ Technol, Sch Chem Chem Engn & Life Sci, Wuhan 430070, Peoples R China
[2] Guangzhou Univ, Sch Chem & Chem Engn, 230 Guangzhou Univ City Outer Ring Rd, Guangzhou 510006, Peoples R China
[3] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450002, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal-organic framework; Hydrogen purification; Adsorption separation; Breakthrough prediction; Open copper site; CARBON-DIOXIDE SEPARATION; MOLECULAR SIMULATION; POROUS MATERIALS; STORAGE; CH4/H-2; ADSORPTION; MIXTURES; DESIGN; ENERGY; INTERPENETRATION;
D O I
10.1016/j.ijhydene.2020.07.041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the increasing demand for environmental protection worldwide, metal-organic frameworks (MOFs) have been pivotal in the clean energy domain. Due to the high surface areas, large porosities and structural tunability, they are promising for the adsorption separation of H-2/CH4 mixtures. High-throughput computational screening was adopted to identify the optimal adsorbents for hydrogen purification from 502 MOFs with open copper sites. Firstly, the adsorption performance of H-2/CH4 mixture in 440 MOFs, which exhibit non-zero surface area and over -3.8 angstrom largest cavity diameter (LCD), was calculated using grand canonical Monte Carlo (GCMC) simulations at 300 K and various pressures. Secondly, we identified the top 9 high-performance MOFs by evaluating the ranking of candidate adsorbent performance according to a combination metric of adsorption performance score (APS, the product of adsorption capacity of CH4 and selectivity of CH4 over H-2) and percent regenerability (R%). PCN-39 and MOF-505 exhibit high APS of 101 mol kg(-1) and 67.9 mol kg(-1), respectively, promising for hydrogen purification. Subsequently, the breakthrough curves of H-2/CH4 mixture through the fixed bed packed with some optimal MOFs were predicted to evaluate their effects in practical hydrogen purification. UMODEH08 or UMOBEF04 exhibits the long dimensionless residence time over 30 of CH4 for the H-2/CH4 separation. Finally, we also explored the behaviors of the radial distribution functions (RDF) and adsorption equilibrium configurations to further demonstrate how the selected MOFs differentiate CH4 from H-2. The investigation on all these observations at molecular level will pave the way for the development of new materials for clean energy applications. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:27320 / 27330
页数:11
相关论文
共 50 条
  • [21] Computational Screening of Metal-Catecholate-Functionalized Metal-Organic Frameworks for Room-Temperature Hydrogen Storage
    Chen, Haoyuan
    Snurr, Randall Q.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (39) : 21701 - 21708
  • [22] Acetylene Storage and Separation Using Metal-Organic Frameworks with Open Metal Sites
    Luna-Triguero, A.
    Vicent-Luna, J. M.
    Madero-Castro, R. M.
    Gomez-Alvarez, P.
    Calero, S.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (34) : 31499 - 31507
  • [23] Metal-Organic Frameworks for Air Pollution Purification and Detection
    Jin, Yehao
    Liu, Huali
    Feng, Mengchu
    Ma, Qinglang
    Wang, Bo
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (43)
  • [24] High-throughput computational screening of hypothetical metal-organic frameworks with open copper sites for CO2/H2 separation
    Li, Mengmeng
    Cai, Weiquan
    Wang, Chao
    Wu, Xuanjun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (31) : 18764 - 18776
  • [25] Evaluation and screening of metal-organic frameworks for the adsorption and separation of methane and hydrogen
    Liu, Xiuying
    Chen, Hao
    Yuan, Junpeng
    Li, Xiaodong
    Yu, Jingxin
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [26] Computational Screening of Metal Catecholates for Ammonia Capture in Metal-Organic Frameworks
    Kim, Ki Chul
    Moghadam, Peyman Z.
    Fairen-Jimenez, David
    Snurr, Randall Q.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (13) : 3257 - 3267
  • [27] Metal-organic frameworks for hydrogen storage
    Hirscher, Michael
    Panella, Barbara
    Schmitz, Barbara
    MICROPOROUS AND MESOPOROUS MATERIALS, 2010, 129 (03) : 335 - 339
  • [28] Molecular simulation of hydrogen adsorption in metal-organic frameworks
    Fischer, Michael
    Hoffmann, Frank
    Froeba, Michael
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2010, 357 (1-3) : 35 - 42
  • [29] Nanostructure and Hydrogen Spillover of Bridged Metal-Organic Frameworks
    Tsao, Cheng-Si
    Yu, Ming-Sheng
    Wang, Cheng-Yu
    Liao, Pin-Yen
    Chen, Hsin-Lung
    Jeng, U-Ser
    Tzeng, Yi-Ren
    Chung, Tsui-Yun
    Wut, Hsiu-Chu
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (04) : 1404 - +
  • [30] Interactions of hydrogen molecules with metal-organic frameworks at adsorption sites
    Zhang, Li
    Wang, Qi
    Liu, Ying-Chun
    Wu, Tao
    Chen, Dan
    Wang, Xin-Ping
    CHEMICAL PHYSICS LETTERS, 2009, 469 (4-6) : 261 - 265