IMPROVED ERROR BOUNDS FOR INNER PRODUCTS IN FLOATING-POINT ARITHMETIC

被引:39
作者
Jeannerod, Claude-Pierre [1 ]
Rump, Siegfried M. [2 ,3 ]
机构
[1] Univ Lyon, Lab LIP, INRIA, CNRS,ENS Lyon,INRIA,UCBL, F-69364 Lyon 07, France
[2] Hamburg Univ Technol, Inst Reliable Comp, D-21071 Hamburg, Germany
[3] Waseda Univ, Fac Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan
关键词
floating-point inner product; rounding error analysis; unit in the first place; MULTIPLICATION; SUMMATION;
D O I
10.1137/120894488
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given two floating-point vectors x, y of dimension n and assuming rounding to nearest, we show that if no underflow or overflow occurs, any evaluation order for an inner product returns a floating-point number (r) over cap such that vertical bar(r) over cap - x(T)y vertical bar <= nu vertical bar x vertical bar(T)vertical bar y vertical bar with u the unit roundoff. This result, which holds for any radix and with no restriction on n, can be seen as a generalization of a similar bound given in [S. M. Rump, BIT, 52 (2012), pp. 201-220] for recursive summation in radix 2, namely, vertical bar(r) over cap - x(T)e vertical bar <= (n - 1)u vertical bar x vertical bar(T)e with e = [1, 1, ... , 1](T). As a direct consequence, the error bound for the floating-point approximation (C) over cap of classical matrix multiplication with inner dimension n simplifies to vertical bar(C) over cap - AB vertical bar <= nu vertical bar A parallel to B vertical bar.
引用
收藏
页码:338 / 344
页数:7
相关论文
共 11 条
[1]   Error bounds on complex floating-point multiplication [J].
Brent, Richard ;
Percival, Colin ;
Zimmermann, Paul .
MATHEMATICS OF COMPUTATION, 2007, 76 (259) :1469-1481
[2]   MATRIX MULTIPLICATION VIA ARITHMETIC PROGRESSIONS [J].
COPPERSMITH, D ;
WINOGRAD, S .
JOURNAL OF SYMBOLIC COMPUTATION, 1990, 9 (03) :251-280
[3]   Handling floating-point exceptions in numeric programs [J].
Hauser, JR .
ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 1996, 18 (02) :139-174
[4]  
Higham N. J., 2002, Accuracy and stability of numerical algorithms
[5]  
Kie~lbasinski A., 1992, NUMERYCZNA ALGEBRA L
[6]  
Kielbasinski A, 1988, Numerische Lineare Algebra: Eine Computerorientierte Einfuhrung
[7]   Error estimation of floating-point summation and dot product [J].
Rump, Siegfried M. .
BIT NUMERICAL MATHEMATICS, 2012, 52 (01) :201-220
[8]   ACCURATE FLOATING-POINT SUMMATION PART I: FAITHFUL ROUNDING [J].
Rump, Siegfried M. ;
Ogita, Takeshi ;
Oishi, Shin'ichi .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (01) :189-224
[9]   Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates [J].
Jonathan Richard Shewchuk .
Discrete & Computational Geometry, 1997, 18 (3) :305-363
[10]   GAUSSIAN ELIMINATION IS NOT OPTIMAL [J].
STRASSEN, V .
NUMERISCHE MATHEMATIK, 1969, 13 (04) :354-&