Parameter Identification using Discrete Wavelet Transform

被引:0
作者
Ohkami, T. [1 ]
Koyama, S. [1 ]
机构
[1] Shinshu Univ, Dept Civil Engn, Nagano, Japan
来源
PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STRUCTURES TECHNOLOGY | 2010年 / 93卷
基金
日本学术振兴会;
关键词
parameter identification; discrete wavelet transform; elastic constants; damage tensors; finite element analysis; back analysis; ill-posed problems; BEM; FEM;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents an identification method using observational boundary conditions and discrete wavelet analysis. The material parameter identification methods which belong to deterministic approaches are classified into inverse and direct approaches. The proposed method combines the inverse approach and the direct approach [1, 2], and by applying the discrete wavelet transform to the system matrix of the iteration equation, we estimate unknown elastic constants and damage tensors of jointed rock masses for the cases in which the number of unknown parameters exceed the observed data. Layered vertical slope examples are calculated to investigate the validity of the method.
引用
收藏
页数:14
相关论文
共 14 条
[1]  
[Anonymous], 1992, Soils Found.
[2]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[3]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[4]   Wavelet solution of the inverse parameter problems [J].
Doi, T ;
Hayano, S ;
Saito, Y .
IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (02) :1962-1965
[5]   Wavelet solution of the inverse source problems [J].
Doi, T ;
Hayano, S ;
Saito, Y .
IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (02) :1935-1938
[6]   Parallel iterative solvers involving fast wavelet transforms for the solution of BEM systems [J].
González, P ;
Cabaleiro, JC ;
Pena, TF .
ADVANCES IN ENGINEERING SOFTWARE, 2002, 33 (7-10) :417-426
[7]   Biorthogonal wavelet approximation for the coupling of FEM-BEM [J].
Harbrecht, H ;
Paiva, F ;
Pérez, C ;
Schneider, R .
NUMERISCHE MATHEMATIK, 2002, 92 (02) :325-356
[8]   DEFORMATION AND FRACTURING BEHAVIOR OF DISCONTINUOUS ROCK MASS AND DAMAGE MECHANICS THEORY [J].
KAWAMOTO, T ;
ICHIKAWA, Y ;
KYOYA, T .
INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 1988, 12 (01) :1-30
[9]   A practical determination strategy of optimal threshold parameter for matrix compression in wavelet BEM [J].
Koro, K ;
Abe, K .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 57 (02) :169-191
[10]   Identification of elastic materials using wavelet transform [J].
Ohkami, T. ;
Nagao, J. ;
Koyama, S. .
COMPUTERS & STRUCTURES, 2006, 84 (29-30) :1866-1873