Effect of CGRP-Adenoviral Vector Transduction on the Osteoblastic Differentiation of Rat Adipose-Derived Stem Cells

被引:23
作者
Fang, Zhong [1 ]
Yang, Qin [2 ]
Xiong, Wei [1 ]
Li, Guang-hui [1 ]
Liao, Hui [1 ]
Xiao, Jun [1 ]
Li, Feng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Orthoped, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Pathol, Wuhan 430074, Hubei, Peoples R China
来源
PLOS ONE | 2013年 / 8卷 / 08期
基金
中国国家自然科学基金;
关键词
GENE-RELATED PEPTIDE; SEGMENTAL BONE DEFECTS; LENTIVIRAL VECTOR; STROMAL CELLS; TISSUE; EXPRESSION; MICE; PROLIFERATION; INVOLVEMENT; RABBITS;
D O I
10.1371/journal.pone.0072738
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Calcitonin gene-related peptide (CGRP) promotes osteoblast recruitment and osteogenic activity. However, no evidence suggests that CGRP could affect the differentiation of stem cells toward osteoblasts. In this study, we genetically modified adipose-derived stem cells (ADSCs) by introducing the CGRP gene through adenoviral vector transduction and investigated on cellular proliferation and osteoblast differentiation in vitro and osteogenesis in vivo as well. For the in vitro analyses, rat ADSCs were transducted with adenoviral vectors containing the CGRP gene (Ad-CGRP) and were cultured in complete osteoblastic medium. The morphology, proliferative capacity, and formation of localized regions of mineralization in the cells were evaluated. The expression of alkaline phosphatase (ALP) and special markers of osteoblasts, such as Collagen I, Osteocalcin (BPG) and Osteopontin (OPN), were measured by cytochemistry, MMT, RT-PCR, and Western blot. For the in vivo analyses, the Ad-CGRP-ADSCs/Beta-tricalcium phosphate (beta-TCP) constructs were implanted in rat radial bone defects for 12 weeks. Radiography and histomorphology evaluations were carried out on 4 weeks and 12 weeks. Our analyses indicated that heterogeneous spindle-shaped cells and localized regions of mineralization were formed in the CGRP-transduced ADSCs (the transduced group). A higher level of cellular proliferation, a high expression level of ALP on days 7 and 14 (p<0.05), and increased expression levels of Collagen I, BPG and OPN presented in transduced group (p<0.05). The efficiency of new bone formation was dramatically enhanced in vivo in Ad-CGRP-ADSCs/beta-TCP group but not in beta-TCP group and ADSCs/beta-TCP group. Our results reveal that ADSCs transduced with an Ad-CGRP vector have stronger potential to differentiate into osteoblasts in vitro and are able to regenerate a promising new tissue engineering bone in vivo. Our findings suggest that CGRP-transduced ADSCs may serve as seed cells for bone tissue engineering and provide a potential way for treating bone defects.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Human adipose-derived stem cells isolated from young and elderly women: their differentiation potential and scaffold interaction during in vitro osteoblastic differentiation
    de Girolamo, Laura
    Lopa, Silvia
    Arrigoni, Elena
    Sartori, Matteo F.
    Preis, Franz W. Baruffaldi
    Brini, Anna T.
    CYTOTHERAPY, 2009, 11 (06) : 793 - 803
  • [12] The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells
    Ko, Wan-Kyu
    Heo, Dong Nyoung
    Moon, Ho-Jin
    Lee, Sang Jin
    Bae, Min Soo
    Lee, Jung Bok
    Sun, In-Cheol
    Jeon, Hoon Bong
    Park, Hun Kuk
    Kwon, Il Keun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 438 : 68 - 76
  • [13] Improving Lentiviral Transduction of Human Adipose-Derived Mesenchymal Stem Cells
    Collon, Kevin
    Gallo, Matthew C.
    Bell, Jennifer A.
    Chang, Stephanie W.
    Rodman, John Croom Sueiro
    Sugiyama, Osamu
    Kohn, Donald B.
    Lieberman, Jay R.
    HUMAN GENE THERAPY, 2022, 33 (23-24) : 1260 - 1268
  • [14] Superparamagnetic iron oxide promotes osteogenic differentiation of rat adipose-derived stem cells
    Xiao, Hai-Tao
    Wang, Lei
    Yu, Bin
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2015, 8 (01): : 698 - 705
  • [15] Differentiation of human adipose-derived stem cells into endometrial epithelial cells
    Fang, Yang
    Zhang, Wan-Lin
    Chen, Shu-Qiang
    Sun, Hui-Jun
    Lu, Jie
    Xiao, Xi-Feng
    Wang, Xiao-Hong
    REPRODUCTIVE AND DEVELOPMENTAL MEDICINE, 2020, 4 (03) : 137 - 145
  • [16] The Biomolecular Basis of Adipogenic Differentiation of Adipose-Derived Stem Cells
    Scioli, Maria Giovanna
    Bielli, Alessandra
    Gentile, Pietro
    Mazzaglia, Donatella
    Cervelli, Valerio
    Orlandi, Augusto
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (04) : 6517 - 6526
  • [17] Adipose-derived stem cells: An appropriate selection for osteogenic differentiation
    Shafaei, Hajar
    Kalarestaghi, Hossein
    JOURNAL OF CELLULAR PHYSIOLOGY, 2020, 235 (11) : 8371 - 8386
  • [18] Effect of Eucomis autumnalis on the Osteogenic Differentiation of Adipose-Derived Stem Cells
    Mkhumbeni, Nolutho
    Pillay, Michael
    Mtunzi, Fanyana
    Motaung, Keolebogile Shirley Caroline
    TISSUE ENGINEERING PART A, 2022, 28 (3-4) : 136 - 149
  • [19] Icariin-mediated differentiation of mouse adipose-derived stem cells into cardiomyocytes
    Jin, Ming-shun
    Shi, Sa
    Zhang, Yi
    Yan, Yan
    Sun, Xiao-dong
    Liu, Wei
    Liu, Hui-wen
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2010, 344 (1-2) : 1 - 9
  • [20] A Comparative Study of Proliferation and Hepatic Differentiation of Human Adipose-Derived Stem Cells
    Coradeghini, R.
    Guida, C.
    Scanarotti, C.
    Sanguineti, R.
    Bassi, A. M.
    Parodi, A.
    Santi, P. L.
    Raposio, E.
    CELLS TISSUES ORGANS, 2010, 191 (06) : 466 - 477