Nonlinear degenerate cross-diffusion systems with nonlocal interaction

被引:32
作者
Di Francesco, M. [1 ]
Esposito, A. [1 ]
Fagioli, S. [1 ]
机构
[1] Univ Aquila, DISIM Dept Informat Engn Comp Sci & Math, Via Vetoio 1 Coppito, I-67100 Laquila, AQ, Italy
关键词
Cross-diffusion systems; Nonlocal interaction; JKO scheme; CONTINUITY EQUATIONS; PARABOLIC-SYSTEMS; MODEL; EVOLUTION; AGGREGATION; CONVEXITY; EXISTENCE; SWARM; FLOWS;
D O I
10.1016/j.na.2017.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a class of systems of partial differential equations with nonlinear cross-diffusion and nonlocal interactions, which are of interest in several contexts in social sciences, finance, biology, and real world applications. Assuming a uniform "coerciveness" assumption on the diffusion part, which allows to consider a large class of systems with degenerate cross-diffusion (i.e. of porous medium type) and relaxes sets of assumptions previously considered in the literature, we prove global-in-time existence of weak solutions by means of a semi-implicit version of the Jordan-Kinderlehrer-Otto scheme. Our approach allows to consider nonlocal interaction terms not necessarily yielding a formal gradient flow structure. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:94 / 117
页数:24
相关论文
共 57 条
  • [1] DYNAMIC THEORY OF QUASILINEAR PARABOLIC-SYSTEMS .3. GLOBAL EXISTENCE
    AMANN, H
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) : 219 - 250
  • [2] Ambrosio L., 2005, Lectures in Mathematics ETH Zurich
  • [3] Ambrosio L, 2007, HBK DIFF EQUAT EVOL, V3, P1, DOI 10.1016/S1874-5717(07)80004-1
  • [4] [Anonymous], ELECT J DIFFER EQ
  • [5] [Anonymous], 1968, LINEAR QUASILINEAR E
  • [6] TWO-WAY MULTI-LANE TRAFFIC MODEL FOR PEDESTRIANS IN CORRIDORS
    Appert-Rolland, Cecile
    Degond, Pierre
    Motsch, Sebastien
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2011, 6 (03) : 351 - 381
  • [7] A NONLINEAR PARABOLIC-HYPERBOLIC SYSTEM FOR CONTACT INHIBITION OF CELL-GROWTH
    Bertsch, Miciiiel
    Hilhorst, Danielle
    Izuhara, Hiroiumi
    Mimura, Masayasu
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2012, 4 (01): : 137 - 157
  • [8] On nonlocal conservation laws modelling sedimentation
    Betancourt, F.
    Buerger, R.
    Karlsen, K. H.
    Tory, E. M.
    [J]. NONLINEARITY, 2011, 24 (03) : 855 - 885
  • [9] Boi S., 2000, Nonlinear Analysis: Real World Application, V1, P163, DOI 10.1016/S0362-546X(99)00399-5
  • [10] Brezis H., 2011, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext