On g-contractibility of continua

被引:1
作者
Camargo, Javier [1 ]
Pellicer-Covarrubias, Patricia [2 ]
Rincon, Michael [1 ]
机构
[1] Univ Ind Santander, Fac Ciencias, Escuela Matemat, Santander 678, Colombia
[2] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
关键词
Continuum; g-Contractible; Contractible; Dendroid; Uniformly pathwise connected; Hyperspace; Symmetric product;
D O I
10.1016/j.topol.2012.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A continuum X is g-contractible provided that there exists an onto map f:X -> X such that f is homotopic to a constant map. Thus, g-contractibility is a natural generalization of contractibility. In this paper we present properties related to the g-contractibility of products and symmetric products of continua. Furthermore, we show an uncountable family of pairwise non-homeomorphic, uniformly pathwise connected, non-g-contractible, planar dendroids such that their hyperspaces of subcontinua are not g-contractible either. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:461 / 474
页数:14
相关论文
共 17 条
[1]  
[Anonymous], 1966, Allyn and Bacon Series in Advanced Mathematics
[2]  
Bellamy D.P., 1970, P TOP C EM U ATL GA, P8
[3]  
Bellamy D.P., 1979, C MATH, VXLI, P53
[4]  
BELLAMY DP, 1977, B ACAD POL SCI SMAP, V25, P47
[5]  
Borsuk K., 1931, Bull. Amer. Math. Soc., V37, P875
[6]   RI-CONTINUA AND HYPERSPACES [J].
CHARATONIK, WJ .
TOPOLOGY AND ITS APPLICATIONS, 1986, 23 (03) :207-216
[7]   HYPERSPACES OF FINITE SUBSETS WHICH ARE HOMEOMORPHIC TO ALEPH-0-DIMENSIONAL LINEAR METRIC-SPACES [J].
CURTIS, D ;
NHU, NT .
TOPOLOGY AND ITS APPLICATIONS, 1985, 19 (03) :251-260
[8]   A continuum whose hyperspace of subcontinua is not g-contractible [J].
Illanes, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (07) :2179-2182
[9]  
Illanes A., 1999, Pure Appl. Math., V216
[10]   A non-g-contractible uniformly path connected continuum [J].
Krzeminska, I ;
Prajs, JR .
TOPOLOGY AND ITS APPLICATIONS, 1999, 91 (02) :151-158