A Numerical Method for Delayed Fractional-Order Differential Equations

被引:121
作者
Wang, Zhen [1 ,2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Informat Sci & Engn, Qingdao 266590, Peoples R China
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
PREDICTOR-CORRECTOR APPROACH; SYSTEM; DERIVATIVES; CHAOS;
D O I
10.1155/2013/256071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical method for nonlinear fractional-order differential equations with constant or time-varying delay is devised. The order here is an arbitrary positive real number, and the differential operator is with the Caputo definition. The general Adams-Bashforth-Moulton method combined with the linear interpolation method is employed to approximate the delayed fractional-order differential equations. Meanwhile, the detailed error analysis for this algorithm is given. In order to compare with the exact analytical solution, a numerical example is provided to illustrate the effectiveness of the proposed method.
引用
收藏
页数:7
相关论文
共 50 条
[41]   A novel high-order algorithm for the numerical estimation of fractional differential equations [J].
Asl, Mohammad Shahbazi ;
Javidi, Mohammad ;
Yan, Yubin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 342 :180-201
[42]   Fundamental solutions of the general fractional-order diffusion equations [J].
Yang, Xiao-Jun ;
Gao, Feng ;
Ju, Yang ;
Zhou, Hong-Wei .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) :9312-9320
[43]   On the concept of general solution for impulsive differential equations of fractional-order q ∈ (2,3) [J].
Zhang, Xianmin ;
Shu, Tong ;
Liu, Zuohua ;
Ding, Wenbin ;
Peng, Hui ;
He, Jun .
OPEN MATHEMATICS, 2016, 14 :452-473
[44]   On the Solution of the Fractional-Order Pneumonia Model Using Numerical Computational Methods [J].
Alalyani, Ahmad .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (04) :2763-2799
[45]   Synchronization of Fractional-Order Delayed Neural Networks with Hybrid Coupling [J].
Bao, Haibo ;
Park, Ju H. ;
Cao, Jinde .
COMPLEXITY, 2016, 21 (S1) :106-112
[46]   State estimation of fractional-order delayed memristive neural networks [J].
Bao, Haibo ;
Cao, Jinde ;
Kurths, Juergen .
NONLINEAR DYNAMICS, 2018, 94 (02) :1215-1225
[47]   Novel operational matrices-based method for solving fractional-order delay differential equations via shifted Gegenbauer polynomials [J].
Usman, M. ;
Hamid, M. ;
Zubair, T. ;
Haq, R. U. ;
Wang, W. ;
Liu, M. B. .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 372
[48]   CHAOTIC VIBRATION OF NONLINEAR FRACTIONAL-ORDER DIFFERENTIAL OSCILLATOR [J].
Zhang, W. ;
Huang, F. ;
Li, B. H. ;
Li, G. ;
Zheng, L. M. ;
Wang, X. L. .
ENVIRONMENTAL VIBRATIONS: PREDICTION, MONITORING, MITIGATION AND EVALUATION, VOLS I AND II, 2009, :937-941
[49]   Dynamic behaviors of nonlinear fractional-order differential oscillator [J].
Wei Zhang ;
Shao-kai Liao ;
Nobuyuki Shimizu .
Journal of Mechanical Science and Technology, 2009, 23 :1058-1064
[50]   Dynamic behaviors of nonlinear fractional-order differential oscillator [J].
Zhang, Wei ;
Liao, Shao-kai ;
Shimizu, Nobuyuki .
JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2009, 23 (04) :1058-1064