Generalized rank functions and an entropy argument

被引:7
作者
Kahn, J [1 ]
Lawrenz, A
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08855 USA
[2] Rutgers State Univ, RUTCOR, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jcta.1999.2965
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A rank function is a function f:2([d]) --> N such that f(O) = 0 and f(A) less than or equal to f(A boolean OR x) less than or equal to f(A) + 1 for all A subset of or equal to [d], x is an element of [d]\A. Athanusiadis conjectured an upper bound on the number of rank functions on 2([d]). We prove this conjecture and generalize it to functions with bounded jumps. (C) 1999 Academic Press.
引用
收藏
页码:398 / 403
页数:6
相关论文
共 3 条
[1]  
Athanasiadis C.A., 1996, Doctoral dissertation
[2]   SOME INTERSECTION-THEOREMS FOR ORDERED SETS AND GRAPHS [J].
CHUNG, FRK ;
GRAHAM, RL ;
FRANKL, P ;
SHEARER, JB .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 43 (01) :23-37
[3]  
MCELIECE RJ, 1977, THEORY INFORMATION C