Placental Mitochondria Therapy for Cerebral Ischemia-Reperfusion Injury in Mice

被引:70
|
作者
Nakamura, Yoshihiko
Lo, Eng H.
Hayakawa, Kazuhide
机构
[1] Massachusetts Gen Hosp, Neuroprotect Res Lab, Dept Radiol, Charlestown, MA USA
[2] Massachusetts Gen Hosp, Neuroprotect Res Lab, Dept Neurol, Charlestown, MA USA
[3] Harvard Med Sch, Charlestown, MA USA
关键词
membrane potentials; mitochondrial proteins; placenta; proof of concept study; stroke;
D O I
10.1161/STROKEAHA.120.030152
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and Purpose: There is an urgent need to develop adjunct therapies that can be added onto reperfusion for acute ischemic stroke. Recently, mitochondrial transplantation has emerged as a promising therapeutic approach for boosting brain tissue protection. In this proof-of-concept study, we investigate the feasibility of using placenta as a source for mitochondrial transplantation in a mouse model of transient focal cerebral ischemia-reperfusion. Methods: Mitochondria-enriched fractions were isolated from cryopreserved mouse placenta. Mitochondrial purity and JC1 membrane potentials were assessed by flow cytometry. Adenosine triphosphate and mitochondrial proteins were measured by luminescence intensity and western blot, respectively. Therapeutic efficacy of mitochondrial fractions was assessed in a mouse model of transient focal cerebral ischemia-reperfusion. Results: Flow cytometry analysis demonstrated that about 87% of placental mitochondria were viable and maintained JC1 membrane potentials after isolation. Placental mitochondrial fractions contained adenosine triphosphate equivalent to mitochondrial fractions isolated from skeletal muscle and brown fat tissue. Normalized mitochondrial antioxidant enzymes (glutathione reductase, MnSOD [manganese superoxide dismutase]) and HSP70 (heat shock protein 70) were highly preserved in placental mitochondrial fractions. Treatment with placental mitochondrial fractions immediately after reperfusion significantly decreased infarction after focal cerebral ischemia in mice. Conclusions: Cryopreserved placenta can be a feasible source for viable mitochondrial isolation. Transplantation with placental mitochondria may amplify beneficial effects of reperfusion in stroke.
引用
收藏
页码:3142 / 3146
页数:5
相关论文
共 50 条
  • [1] Senolytic Therapy for Cerebral Ischemia-Reperfusion Injury
    Lim, Songhyun
    Kim, Tae Jung
    Kim, Young-Ju
    Kim, Cheesue
    Ko, Sang-Bae
    Kim, Byung-Soo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (21)
  • [2] NOVEL ANTIOXIDANT THERAPY FOR CEREBRAL ISCHEMIA-REPERFUSION INJURY
    PANETTA, JA
    CLEMENS, JA
    CELLULAR, BIOCHEMICAL, AND MOLECULAR ASPECTS OF REPERFUSION INJURY, 1994, 723 : 239 - 245
  • [3] Neuroprotective effects of betanin in mice with cerebral ischemia-reperfusion injury
    Thong-Asa, Wachiryah
    Puenpha, Kanthaporn
    Lairaksa, Thannaporn
    Saengjinda, Siriwipha
    EXPERIMENTAL ANIMALS, 2023, 72 (03) : 336 - 345
  • [4] Triiodothyronine Aggravates Global Cerebral Ischemia-Reperfusion Injury in Mice
    Doshi, Masaru
    Watanabe, Shiro
    Natori, Yujin
    Hosoyamada, Makoto
    Hirashima-Akae, Yutaka
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2021, 44 (12) : 1824 - 1831
  • [5] Metabolomics profiling to characterize cerebral ischemia-reperfusion injury in mice
    Chen, Qiong
    Zhou, Ting
    Yuan, Jun-jie
    Xiong, Xiao-yi
    Liu, Xue-hui
    Qiu, Zong-ming
    Hu, Lin-lin
    Lu, Hui
    He, Qian
    Liu, Chang
    Yang, Qing-wu
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [6] Pharmacological therapy to cerebral ischemia-reperfusion injury: Focus on saponins
    Zeng, Miao
    Zhang, Ruifeng
    Yang, Qiuyue
    Guo, Lin
    Zhang, Xiaolu
    Yu, Bin
    Gan, Jiali
    Yang, Zhen
    Li, Huhu
    Wang, Yu
    Jiang, Xijuan
    Lu, Bin
    BIOMEDICINE & PHARMACOTHERAPY, 2022, 155
  • [7] Cerebral ischemia-reperfusion injury and adhesion
    Winquist, RJ
    Kerr, S
    NEUROLOGY, 1997, 49 (05) : S23 - S26
  • [8] Role of mitochondria in renal ischemia-reperfusion injury
    Huang, Ruizhen
    Zhang, Chiyu
    Xiang, Zhengjie
    Lin, Tao
    Ling, Jian
    Hu, Honglin
    FEBS JOURNAL, 2024,
  • [9] Molecular therapy of cardiac ischemia-reperfusion injury based on mitochondria and ferroptosis
    Wang, Ruiquan
    Chen, Xinzhe
    Li, Xinmin
    Wang, Kun
    JOURNAL OF MOLECULAR MEDICINE-JMM, 2023, 101 (09): : 1059 - 1071
  • [10] Mitochondria and NO in cardiac ischemia-reperfusion injury and preconditioning
    Brookes, P. S.
    FREE RADICAL RESEARCH, 2006, 40 : S55 - S55