QUANTITATIVE LOGARITHMIC SOBOLEV INEQUALITIES AND STABILITY ESTIMATES

被引:45
作者
Fathi, Max [1 ]
Indrei, Emanuel [2 ]
Ledoux, Michel [3 ,4 ]
机构
[1] Univ Paris 06, Paris, France
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[3] Univ Toulouse, Toulouse, France
[4] Inst Univ France, Toulouse, France
关键词
Logarithmic Sobolev inequalities; deficit estimates; transportation inequalities; optimal transport theory; semigroup theory; MONGE-AMPERE EQUATION; ISOPERIMETRIC INEQUALITY; TRANSPORTATION COST; MASS-TRANSPORT; ENTROPY; PROOF;
D O I
10.3934/dcds.2016097
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish an improved form of the classical logarithmic Sobolev inequality for the Gaussian measure restricted to probability densities which satisfy a Poincare inequality. The result implies a lower bound on the deficit in terms of the quadratic Kantorovich-Wasserstein distance. We similarly investigate the deficit in the Talagrand quadratic transportation cost inequality this time by means of an L-1-Kantorovich-Wasserstein distance, optimal for product measures, and deduce a lower bound on the deficit in the logarithmic Sobolev inequality in terms of this metric. Applications are given in the context of the Bakry-Emery theory and the coherent state transform. The proofs combine tools from semigroup and heat kernel theory and optimal mass transportation.
引用
收藏
页码:6835 / 6853
页数:19
相关论文
共 44 条
[1]  
Bakry D, 1983, SEMINAIRE PROBABILIT, V84, P177, DOI 10.1007/BFb0075847
[2]  
Bakry D., 1994, LECT NOTES MATH, V1581, P1, DOI 10.1007/BFb0073872
[3]  
Bakry D., 2014, GRUNDLEHREN MATH WIS, V348
[4]   A simple proof of the Poincare inequality for a large class of probability measures including the log-concave case [J].
Bakry, Dominique ;
Barthe, Franck ;
Cattiaux, Patrick ;
Guillin, Arnaud .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 :60-66
[5]  
Barchiesi M., 2015, ANN PROBAB IN PRESS
[6]   Mass transport and variants of the logarithmic sobolev inequality [J].
Barthe, Franck ;
Kolesnikov, Alexander V. .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (04) :921-979
[7]   A NOTE ON THE SOBOLEV INEQUALITY [J].
BIANCHI, G ;
EGNELL, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :18-24
[8]   Bounds on the deficit in the logarithmic Sobolev inequality [J].
Bobkov, S. G. ;
Gozlan, N. ;
Roberto, C. ;
Samson, P. -M. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (11) :4110-4138
[9]   Exponential integrability and transportation cost related to logarithmic sobolev inequalities [J].
Bobkov, SG ;
Götze, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 163 (01) :1-28
[10]  
CAFFARELLI L. A., 1992, Journal of the American Mathematical Society, V5, P99, DOI [DOI 10.2307/2152752, 10.2307/2152752]