Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras

被引:53
作者
Kang, Seok-Jin [1 ]
Kashiwara, Masaki [2 ,3 ,4 ]
Kim, Myungho [5 ]
机构
[1] Joeun Math Res Inst, 441 Yeoksam Ro, Seoul 06196, South Korea
[2] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
[3] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[4] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[5] Kyung Hee Univ, Dept Math, Seoul 02447, South Korea
基金
日本学术振兴会;
关键词
CRYSTAL BASES; Q-ANALOG; INDUCED REPRESENTATIONS; MODULES;
D O I
10.1007/s00222-017-0754-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let J be a set of pairs consisting of good -modules and invertible elements in the base field . The distribution of poles of normalized R-matrices yields Khovanov-Lauda-Rouquier algebras for each . We define a functor from the category of graded -modules to the category of -modules. The functor sends convolution products of finite-dimensional graded -modules to tensor products of finite-dimensional -modules. It is exact if is of finite type A, D, E. If is the fundamental representation of of weight and , then is the Khovanov-Lauda-Rouquier algebra of type . The corresponding functor sends a finite-dimensional graded -module to a module in , where is the category of finite-dimensional integrable -modules M such that every composition factor of M appears as a composition factor of a tensor product of modules of the form . Focusing on this case, we obtain an abelian rigid graded tensor category by localizing the category of finite-dimensional graded -modules. The functor factors through . Moreover, the Grothendieck ring of the category is isomorphic to the Grothendieck ring of at .
引用
收藏
页码:591 / 685
页数:95
相关论文
共 38 条
[1]   Finite-dimensional representations of quantum affine algebras [J].
Akasaka, T ;
Kashiwara, M .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1997, 33 (05) :839-867
[2]  
[Anonymous], 2006, Categories and Sheaves
[3]   On the decomposition numbers of the Hecke algebra of G(m,1,n) [J].
Ariki, S .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1996, 36 (04) :789-808
[4]  
BERNSTEIN IN, 1977, ANN SCI ECOLE NORM S, V10, P441
[5]   Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras [J].
Brundan, Jonathan ;
Kleshchev, Alexander .
INVENTIONES MATHEMATICAE, 2009, 178 (03) :451-484
[6]   Quantum affine algebras and affine Hecke algebras [J].
Chari, V ;
Pressley, A .
PACIFIC JOURNAL OF MATHEMATICS, 1996, 174 (02) :295-326
[7]  
Chari V., 1994, A guide to quantum groups
[8]   A NEW INTERPRETATION OF GELFAND-TZETLIN BASES [J].
CHEREDNIK, IV .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (02) :563-577
[9]   CALCULATION OF EXCITATION-SPECTRA OF THE SPIN MODEL RELATED WITH THE VECTOR REPRESENTATION OF THE QUANTIZED AFFINE ALGEBRA OF TYPE A(N)((1)) [J].
DATE, E ;
OKADO, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (03) :399-417
[10]  
GINZBURG V, 1994, CONT MATH, V175, P101