On singular sets of local solutions to p-Laplace equations

被引:51
作者
Lou, Hongwei [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
singular set; p-Laplace equation; optimal control; existence;
D O I
10.1007/s11401-007-0312-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The author proves that the right-hand term of a p-Laplace equation is zero on the singular set of a local solution to the equation. Such a result is used to study the existence of an optimal control problem.
引用
收藏
页码:521 / 530
页数:10
相关论文
共 10 条
[1]   DISTRIBUTED CONTROL OF SYSTEMS GOVERNED BY A GENERAL-CLASS OF QUASI-LINEAR ELLIPTIC-EQUATIONS [J].
CASAS, E ;
FERNANDEZ, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 104 (01) :20-47
[3]  
Gilbarg D., 1998, Elliptic Partial Differential Equations of Second Order, V2nd ed.
[4]  
KINDERLEHRER D, 1981, INTRO VARIATIONAL IN
[5]   Existence of optimal controls for semilinear elliptic equations without Cesari-type conditions [J].
Lou, HW .
ANZIAM JOURNAL, 2003, 45 :115-131
[6]   Existence of optimal controls for semilinear parabolic equations without Cesari-type conditions [J].
Lou, HW .
APPLIED MATHEMATICS AND OPTIMIZATION, 2003, 47 (02) :121-142
[7]  
Morrey C. B. J., 1961, EXISTENCE DIFFERENTI, P241
[9]   REGULARITY FOR A MORE GENERAL-CLASS OF QUASILINEAR ELLIPTIC-EQUATIONS [J].
TOLKSDORF, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 51 (01) :126-150
[10]  
Troianiello G.M., 1987, ELLIPTIC DIFFERENTIA