A posteriori error estimates for linear problems in Cosserat elasticity

被引:0
|
作者
Churilova, M. A. [1 ]
Frolov, M. E. [1 ]
机构
[1] Peter Great St Petersburg Polytech Univ, 29 Polytechnicheskaya St, St Petersburg 195251, Russia
来源
12TH INTERNATIONAL CONFERENCE - MESH METHODS FOR BOUNDARY: VALUE PROBLEMS AND APPLICATIONS | 2019年 / 1158卷
关键词
PLANE PROBLEMS;
D O I
10.1088/1742-6596/1158/2/022032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Paper is addressed to reliability and efficiency of functional a posteriori error estimates for Cosserat elasticity in the process of adaptive mesh refinements. A new variant of such error estimate is proposed. Numerical investigations continue previous work of authors. It is shown that functional approach can be not only efficiently implemented for refinements (with MATLAB), but it provides upper bounds for the energy norm of errors without significant overestimations.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Functional a posteriori estimates of the error in the solutions of plane problems in Cosserat elasticity theory
    Frolov, M. Ye.
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2014, 78 (04): : 425 - 431
  • [2] A posteriori error estimates for local discontinuous Galerkin methods of linear elasticity
    Chen, Yun-Cheng
    Huang, Jian-Guo
    Xu, Yi-Feng
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2011, 45 (12): : 1857 - 1862
  • [3] A posteriori error estimation of quantities of interest for the linear elasticity problems
    Korotov, S.
    International E-Conference on Computer Science 2005, 2005, 2 : 88 - 91
  • [4] A posteriori error estimates for approximate solutions of linear parabolic problems
    Gaevskaya, AV
    Repin, SI
    DIFFERENTIAL EQUATIONS, 2005, 41 (07) : 970 - 983
  • [5] A Posteriori Error Estimates for Approximate Solutions of Linear Parabolic Problems
    A. V. Gaevskaya
    S. I. Repin
    Differential Equations, 2005, 41 : 970 - 983
  • [6] A posteriori error estimates for mixed FEM in elasticity
    Carsten Carstensen
    Georg Dolzmann
    Numerische Mathematik, 1998, 81 : 187 - 209
  • [7] A posteriori error estimates for mixed FEM in elasticity
    Carstensen, C
    Dolzmann, G
    NUMERISCHE MATHEMATIK, 1998, 81 (02) : 187 - 209
  • [8] Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems
    Long Chen
    Jun Hu
    Xuehai Huang
    Hongying Man
    Science China(Mathematics), 2018, 61 (06) : 973 - 992
  • [9] Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems
    Long Chen
    Jun Hu
    Xuehai Huang
    Hongying Man
    Science China Mathematics, 2018, 61 : 973 - 992
  • [10] Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems
    Chen, Long
    Hu, Jun
    Huang, Xuehai
    Man, Hongying
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (06) : 973 - 992