CFD analysis of flow boiling in the ITER first wall

被引:20
作者
Domalapally, Phani [1 ]
Rizzo, Enrico [2 ]
Richard, Laura Savoldi [1 ]
Subba, Fabio [1 ]
Zanino, Roberto [1 ]
机构
[1] Politecn Torino, Dipartimento Energet, I-10129 Turin, Italy
[2] Karlsruhe Inst Technol, Inst Tech Phys, Karlsruhe, Germany
关键词
Boiling; First wall; Two phase flow; Computational Fluid Dynamics;
D O I
10.1016/j.fusengdes.2012.01.024
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
This paper compares two Computational Fluid Dynamic (CFD) approaches for the analysis of flow boiling inside the first wall (FW) of the International Thermonuclear Experimental Reactor (ITER): (1) the Rohsenow model for nucleate boiling, seamlessly switching to the Volume of Fluid (VOF) approach for film boiling, as available in the commercial CFD code STAR-CCM+, (2) the Bergles-Rohsenow (BR) model, for which we developed a User Defined Function (UDF), implemented in the commercial code FLUENT. The physics of both models is described, and the results with different inlet conditions and heating levels are compared with experimental results obtained at the Efremov Institute, Russia. The performance of both models is compared in terms of accuracy and computational cost. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:556 / 560
页数:5
相关论文
共 14 条
[1]  
[Anonymous], 2011, STAR CCM VERS 6 02 0
[2]  
[Anonymous], 2010, ANSYS FLUENT US GUID
[3]  
Bergles A.E., 1964, J HEAT TRANSF, V86, P365, DOI DOI 10.1115/1.3688697
[4]   Numerical simulation of swirl-tube cooling concept, application to the ITER project [J].
Bournonville, Y. ;
Grandotto, M. ;
Pascal-Ribot, S. ;
Spitz, P. ;
Escourbiac, F. .
FUSION ENGINEERING AND DESIGN, 2009, 84 (2-6) :501-504
[5]  
Jayatilleke C.L.V., 1969, Prog. Heat Mass Transf, V1, P193
[6]   Transient heat loads in current fusion experiments, extrapolation to ITER and consequences for its operation [J].
Loarte, A. ;
Saibene, G. ;
Sartori, R. ;
Riccardo, V. ;
Andrew, P. ;
Paley, J. ;
Fundamenski, W. ;
Eich, T. ;
Herrmann, A. ;
Pautasso, G. ;
Kirk, A. ;
Counsell, G. ;
Federici, G. ;
Strohmayer, G. ;
Whyte, D. ;
Leonard, A. ;
Pitts, R. A. ;
Landman, I. ;
Bazylev, B. ;
Pestchanyi, S. .
PHYSICA SCRIPTA, 2007, T128 :222-228
[7]   ITER plasma-facing components [J].
Merola, Mario ;
Loesser, D. ;
Martin, A. ;
Chappuis, P. ;
Mitteau, R. ;
Komarov, V. ;
Pitts, R. A. ;
Gicquel, S. ;
Barabash, V. ;
Giancarli, L. ;
Palmer, J. ;
Nakahira, M. ;
Loarte, A. ;
Campbell, D. ;
Eaton, R. ;
Kukushkin, A. ;
Sugihara, M. ;
Zhang, F. ;
Kim, C. S. ;
Raffray, R. ;
Ferrand, L. ;
Yao, D. ;
Sadakov, S. ;
Furmanek, A. ;
Rozov, V. ;
Hirai, T. ;
Escourbiac, F. ;
Jokinen, T. ;
Calcagno, B. ;
Mori, S. .
FUSION ENGINEERING AND DESIGN, 2010, 85 (10-12) :2312-2322
[8]   3D numerical simulations of hypervapotron cooling concept [J].
Pascal-Ribot, S. ;
Saroji, A. -F. ;
Grandotto, M. ;
Spitz, P. ;
Escourbiac, F. .
FUSION ENGINEERING AND DESIGN, 2007, 82 (15-24) :1781-1785
[9]  
Patankar SV., 2009, Numerical heat transfer and fluid flow, V1
[10]  
Rohsenow W.M., 1952, J. Heat Transfer, V74, P969