Discrete constant mean curvature surfaces on general graphs

被引:1
作者
Hoffmann, Tim [1 ]
Kobayashi, Shimpei [2 ]
Ye, Zi [1 ]
机构
[1] Tech Univ Munich, Fak Math, Boltzmann Str 3, D-85747 Garching, Germany
[2] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
关键词
Discrete differential geometry; Constant mean curvature surface;
D O I
10.1007/s10711-022-00733-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The contribution of this paper is twofold. First, we generalize the definition of discrete isothermic surfaces. Compared with the previous ones, it covers more discrete surfaces, e.g., the associated families of discrete isothermic minimal and non-zero constant mean curvature (CMC in short) surfaces, whose counterpart in smooth case are isothermic surfaces. Second, we show that the discrete isothermic CMC surfaces can be obtained by the discrete holomorphic data (a solution of the additive rational Toda system) via the discrete generalized Weierstrass type representation.
引用
收藏
页数:34
相关论文
共 15 条
[1]  
Bobenko A, 1996, J REINE ANGEW MATH, V475, P187
[2]  
Bobenko A., 2017, J INTEG SYST, V2, P18
[3]  
Bobenko AI, 2002, INT MATH RES NOTICES, V2002, P573
[4]  
Bobenko AI, 1999, OXF LEC S MATH APPL, V16, P3
[5]   Weierstrass type representation of harmonic maps into symmetric spaces [J].
Dorfmeister, J ;
Pedit, F ;
Wu, H .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 1998, 6 (04) :633-668
[6]  
Hoffman T, 1999, OXF LEC S MATH APPL, V16, P97
[7]   A Discrete Extrinsic and Intrinsic Dirac Operator [J].
Hoffmann, Tim ;
Ye, Zi .
EXPERIMENTAL MATHEMATICS, 2022, 31 (03) :920-935
[8]   A Discrete Parametrized Surface Theory in R3 [J].
Hoffmann, Tim ;
Sageman-Furnas, Andrew O. ;
Wardetzky, Max .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (14) :4217-4258
[9]   Bonnet pairs and isothermic surfaces [J].
Kamberov, G ;
Pedit, F ;
Pinkall, U .
DUKE MATHEMATICAL JOURNAL, 1998, 92 (03) :637-644
[10]  
Lam W.Y., 2016, arXiv:1506.08099, P241