ISOLATED SINGULARITIES OF POSITIVE SOLUTIONS OF ELLIPTIC EQUATIONS WITH WEIGHTED GRADIENT TERM

被引:15
作者
Phuoc-Tai Nguyen [1 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Ave Vicuna Mackenna 4860, Santiago 6904441, Chile
来源
ANALYSIS & PDE | 2016年 / 9卷 / 07期
关键词
gradient terms; weak singularities; strong singularities; removability; HAMILTON-JACOBI EQUATIONS; REGULARITY;
D O I
10.2140/apde.2016.9.1671
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of R-N (N > 2) be a C-2 bounded domain containing the origin 0. We study the behavior near 0 of positive solutions of equation (E) - Delta u + vertical bar x vertical bar(alpha)u(p) + vertical bar x vertical bar(beta) vertical bar del(U)vertical bar(q) = 0 in Omega\ {0} , where alpha > -2, beta > -1, p > 1, and q > 1. When 1 < p <(N+ alpha) / (N - 2) and 1 < q <(N+ beta) /(N - 1), we provide a full classification of positive solutions of (E) vanishing on partial derivative Omega. On the contrary, when p >= (N + alpha) /(N - 2) or(N + beta) /(N - 1) <= q <= 2 + beta, we show that any isolated singularity at 0 is removable.
引用
收藏
页码:1671 / 1692
页数:22
相关论文
共 22 条