Preliminary investigation of a nonconforming discontinuous Galerkin method for solving the time-domain Maxwell equations

被引:10
|
作者
Fahs, Hassan [1 ]
Fezoui, Loula [1 ]
Lanteri, Stephane [1 ]
Rapetti, Francesca [2 ]
机构
[1] IINRIA, F-06902 Sophia Antipolis, France
[2] Nice Sophia Antipolis Univ, JA Dieudonne Math Lab, UMR CNRS 6621, F-06108 Nice, France
关键词
discontinuous Galerkin method; Maxwell's equations; nonconforming triangular meshes;
D O I
10.1109/TMAG.2007.916577
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is concerned with the design of a high-order discontinuous Galerkin (DG) method for solving the 2-D time-domain Maxwell equations on nonconforming triangular meshes. The proposed DG method allows for using nonconforming meshes with arbitrary-level hanging nodes. This method combines a centered approximation for the evaluation of fluxes at the interface between neighboring elements of the mesh, with a leap-frog time integration scheme. Numerical experiments are presented which both validate the theoretical results and provide further insights regarding to the practical performance of the proposed DG method, particulary when nonconforming meshes are employed.
引用
收藏
页码:1254 / 1257
页数:4
相关论文
共 50 条
  • [31] Discontinuous Galerkin Implementation of Domain Decomposition Time-Domain Finite-Element Method
    Ye, Zhenbao
    Wang, Chao-Fu
    2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (APSURSI), 2011, : 2338 - 2341
  • [32] A Legendre Pseudospectral Penalty Scheme for Solving Time-Domain Maxwell’s Equations
    Chun-Hao Teng
    Bang-Yan Lin
    Hung-Chun Chang
    Hei-Chen Hsu
    Chien-Nan Lin
    Ko-An Feng
    Journal of Scientific Computing, 2008, 36 : 351 - 390
  • [33] A SPACE-TIME DISCONTINUOUS GALERKIN TREFFTZ METHOD FOR TIME DEPENDENT MAXWELL'S EQUATIONS
    Egger, Herbert
    Kretzschmar, Fritz
    Schnepp, Sascha M.
    Weiland, Thomas
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05) : B689 - B711
  • [34] Discontinuous Galerkin time-domain computations of metallic nanostructures
    Stannigel, Kai
    Koenig, Michael
    Niegemann, Jens
    Busch, Kurt
    OPTICS EXPRESS, 2009, 17 (17): : 14934 - 14947
  • [35] On the immersed interface method for solving time-domain Maxwell's equations in materials with curved dielectric interfaces
    Deng, Shaozhong
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (11) : 791 - 800
  • [36] A vector finite element time-domain method for solving Maxwell's equations on unstructured hexahedral grids
    Rodrigue, G
    White, D
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (03) : 683 - 706
  • [37] A Discontinuous Galerkin Finite Element Time-Domain Method Modeling of Dispersive Media
    Gedney, Stephen D.
    Young, John C.
    Kramer, Tyler C.
    Roden, J. Alan
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (04) : 1969 - 1977
  • [38] A Legendre pseudospectral penalty scheme for solving time-domain Maxwell's equations
    Teng, Chun-Hao
    Lin, Bang-Yan
    Chang, Hung-Chun
    Hsu, Hei-Chen
    Lin, Chien-Nan
    Feng, Ko-An
    JOURNAL OF SCIENTIFIC COMPUTING, 2008, 36 (03) : 351 - 390
  • [39] Modeling of acoustic wave propagation in time-domain using the discontinuous Galerkin method - A comparison with measurements
    Simonaho, Simo-Pekka
    Lahivaara, Timo
    Huttunen, Tomi
    APPLIED ACOUSTICS, 2012, 73 (02) : 173 - 183
  • [40] A Leap-Frog Discontinuous Galerkin Time-Domain Method for HIRF Assessment
    Alvarez, Jesus
    Diaz Angulo, Luis
    Rubio Bretones, Amelia
    Ruiz Cabello, Miguel
    Garcia, Salvador G.
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2013, 55 (06) : 1250 - 1259