Preliminary investigation of a nonconforming discontinuous Galerkin method for solving the time-domain Maxwell equations

被引:10
|
作者
Fahs, Hassan [1 ]
Fezoui, Loula [1 ]
Lanteri, Stephane [1 ]
Rapetti, Francesca [2 ]
机构
[1] IINRIA, F-06902 Sophia Antipolis, France
[2] Nice Sophia Antipolis Univ, JA Dieudonne Math Lab, UMR CNRS 6621, F-06108 Nice, France
关键词
discontinuous Galerkin method; Maxwell's equations; nonconforming triangular meshes;
D O I
10.1109/TMAG.2007.916577
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is concerned with the design of a high-order discontinuous Galerkin (DG) method for solving the 2-D time-domain Maxwell equations on nonconforming triangular meshes. The proposed DG method allows for using nonconforming meshes with arbitrary-level hanging nodes. This method combines a centered approximation for the evaluation of fluxes at the interface between neighboring elements of the mesh, with a leap-frog time integration scheme. Numerical experiments are presented which both validate the theoretical results and provide further insights regarding to the practical performance of the proposed DG method, particulary when nonconforming meshes are employed.
引用
收藏
页码:1254 / 1257
页数:4
相关论文
共 50 条
  • [1] The Discontinuous Galerkin Time-Domain method for Maxwell's equations with anisotropic materials
    Koenig, Michael
    Busch, Kurt
    Niegemann, Jens
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2010, 8 (04) : 303 - 309
  • [2] A Nodal Continuous-Discontinuous Galerkin Time-Domain Method for Maxwell's Equations
    Diaz Angulo, Luis
    Alvarez, Jesus
    Teixeira, Fernando L.
    Fernandez Pantoja, M.
    Garcia, Salvador G.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2015, 63 (10) : 3081 - 3093
  • [3] An implicit leap-frog discontinuous Galerkin method for the time-domain Maxwell's equations in metamaterials
    Li, Jichun
    Waters, Jiajia Wang
    Machorro, Eric A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 223 : 43 - 54
  • [4] The Discontinuous Galerkin Finite-Element Time-Domain Method Solution of Maxwell's Equations
    Gedney, Stephen D.
    Luo, Chong
    Roden, J. Alan
    Crawford, Robert D.
    Guernsey, Bryan
    Miller, Jeffrey A.
    Kramer, Tyler
    Lucas, Eric W.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2009, 24 (02): : 129 - 142
  • [5] An implicit hybridized discontinuous Galerkin method for the 3D time-domain Maxwell equations
    Christophe, Alexandra
    Descombes, Stephane
    Lanteri, Stephane
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 319 : 395 - 408
  • [6] An unconditionally stable discontinuous Galerkin method for solving the 2-D time-domain Maxwell equations on unstructured triangular meshes
    Catella, Adrien
    Dolean, Victorita
    Lanteri, Stephane
    IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 1250 - 1253
  • [7] Convergence of a discontinuous Galerkin scheme for the mixed time-domain Maxwell's equations in dispersive media
    Lanteri, Stephane
    Scheid, Claire
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (02) : 432 - 459
  • [8] Stability of a Leap-Frog Discontinuous Galerkin Method for Time-Domain Maxwell's Equations in Anisotropic Materials
    Araujo, Aderito
    Barbeiro, Silvia
    Ghalati, Maryam Khaksar
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 21 (05) : 1350 - 1375
  • [9] A High-Order Discontinuous Galerkin Method for the Two-Dimensional Time-Domain Maxwell's Equations on Curved Mesh
    Lu, Hongqiang
    Xu, Yida
    Gao, Yukun
    Qin, Wanglong
    Sun, Qiang
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2016, 8 (01) : 104 - 116
  • [10] Discontinuous Galerkin methods for Maxwell's equations in the time domain
    Cohen, Gary
    Ferrieres, Xavier
    Pernet, Sebastien
    COMPTES RENDUS PHYSIQUE, 2006, 7 (05) : 494 - 500