Well-Posedness for the Fifth Order KdV Equation

被引:11
作者
Kato, Takamori [1 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2012年 / 55卷 / 01期
关键词
Fifth order KdV equation; Well-posedness; Cauchy problem; Fourier restriction norm method; Low regula; CAUCHY-PROBLEM; BENJAMIN-ONO;
D O I
10.1619/fesi.55.17
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem of the fifth order KdV equation with low regularity data. We cannot apply the iteration argument to this problem when initial data. is given in the Sobolev space H-s for any s epsilon R. So we give initial data in H-s,H- (a) = H-s boolean AND H-a with a <= min {s, 0}. Then we recover more derivatives of the nonlinear term to be able to use the iteration method. Therefore we obtain the local well-posedness in H-s,H- a in the case s >= max{-1/4, -2a - 2}, -3/2 < a <= -1/4 and (s, a) not equal (-1/4, -7/8). Moreover, we obtain the ill-posedness in some sense when s < max{-1/4, -2a - 2}, a <= -3/2 or a > -1/4. The main tool is a variant of the Fourier restriction norm method, which is based on Kishimoto's work (2009).
引用
收藏
页码:17 / 53
页数:37
相关论文
共 28 条
  • [1] Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrodinger equation
    Bejenaru, I
    Tao, T
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (01) : 228 - 259
  • [2] IMPULSE, FLOW FORCE AND VARIATIONAL-PRINCIPLES
    BENJAMIN, TB
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 1984, 32 (1-3) : 3 - 68
  • [3] BENNEY DJ, 1977, STUD APPL MATH, V56, P81
  • [4] Bourgain J., 1993, Geom. Funct. Anal., V3, P107
  • [5] Bourgain J., 1997, Selecta Math. (N.S.), V3, P115
  • [6] Bourgain J., 1993, The KdV equations, GAGA, V3, P209, DOI 10.1007/BF01895688
  • [7] Low regularity solutions of two fifth-order KDV type equations
    Chen, Wengu
    Li, Junfeng
    Miao, Changxing
    Wu, Jiahong
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2009, 107 : 221 - 238
  • [8] On the Cauchy problem for the Zakharov system
    Ginibre, J
    Tsutsumi, Y
    Velo, G
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) : 384 - 436
  • [9] On the hierarchies of higher order mKdV and KdV equations
    Gruenrock, Axel
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (03): : 500 - 536
  • [10] Holmer J, 2007, ELECTRON J DIFFER EQ