Hybrid Projective Synchronization for Two Identical Fractional-Order Chaotic Systems

被引:1
作者
Zhou, Ping [1 ,2 ]
Ding, Rui [2 ]
Cao, Yu-xia [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Res Ctr Syst Theory & Applicat, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Minist Educ, Key Lab Ind Internet Things & Networked Control, Chongqing 400065, Peoples R China
关键词
COMPLEX DYNAMICAL NETWORK; ACTIVE CONTROL; ATTRACTORS;
D O I
10.1155/2012/768587
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A hybrid projective synchronization scheme for two identical fractional-order chaotic systems is proposed in this paper. Based on the stability theory of fractional-order systems, a controller for the synchronization of two identical fractional-order chaotic systems is designed. This synchronization scheme needs not to absorb all the nonlinear terms of response system. Hybrid projective synchronization for the fractional-order Chen chaotic system and hybrid projective synchronization for the fractional-order hyperchaotic Lu system are used to demonstrate the validity and feasibility of the proposed scheme.
引用
收藏
页数:11
相关论文
共 31 条
[1]   Synchronization of fractional order chaotic systems using active control method [J].
Agrawal, S. K. ;
Srivastava, M. ;
Das, S. .
CHAOS SOLITONS & FRACTALS, 2012, 45 (06) :737-752
[2]   Observer-based projective synchronization of fractional systems via a scalar signal: application to hyperchaotic Rossler systems [J].
Cafagna, Donato ;
Grassi, Giuseppe .
NONLINEAR DYNAMICS, 2012, 68 (1-2) :117-128
[3]   Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen-Lee systems [J].
Chang, Ching-Ming ;
Chen, Hsien-Keng .
NONLINEAR DYNAMICS, 2010, 62 (04) :851-858
[4]   Secure digital communication using controlled projective synchronisation of chaos [J].
Chee, CY ;
Xu, DL .
CHAOS SOLITONS & FRACTALS, 2005, 23 (03) :1063-1070
[5]   Generating hyperchaotic Lu attractor via state feedback control [J].
Chen, AM ;
Lu, JN ;
Lü, JH ;
Yu, SM .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 364 :103-110
[6]   Nonlinear observer based full-state projective synchronization for a class of fractional-order chaotic system [J].
Chen Xiang-Rong ;
Liu Chong-Xin ;
Li Yong-Xun .
ACTA PHYSICA SINICA, 2008, 57 (03) :1453-1457
[7]   Synchronization of N-coupled incommensurate fractional-order chaotic systems with ring connection [J].
Delshad, Saleh Sayyad ;
Asheghan, Mohammad Mostafa ;
Beheshti, Mohammadtaghi Hamidi .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (09) :3815-3824
[8]   Chaotic dynamics of the fractional Lorenz system [J].
Grigorenko, I ;
Grigorenko, E .
PHYSICAL REVIEW LETTERS, 2003, 91 (03)
[9]   Dynamic behavior of fractional order Duffing chaotic system and its synchronization via singly active control [J].
He, Gui-tian ;
Luo, Mao-kang .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2012, 33 (05) :567-582
[10]   Projective Synchronization of Driving-Response Systems and Its Application to Secure Communication [J].
Li, Ke-Zan ;
Zhao, Ming-Chao ;
Fu, Xin-Chu .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2009, 56 (10) :2280-2291