Incremental approximation by one-hidden-layer neural networks: Discrete functions rapprochement

被引:0
作者
Beliczynski, B [1 ]
机构
[1] WARSAW UNIV TECHNOL,INST CONTROL & IND ELECT,PL-00662 WARSAW,POLAND
来源
ISIE'96 - PROCEEDINGS OF THE IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1 AND 2 | 1996年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页码:392 / 397
页数:6
相关论文
共 50 条
[41]   Incremental neural networks for function approximation [J].
LTIRF-INPG, Grenoble, France .
Nucl Instrum Methods Phys Res Sect A, 1-2 (268-270)
[42]   Regularized One-Layer Neural Networks for Distributed and Incremental Environments [J].
Fontenla-Romero, Oscar ;
Guijarro-Berdinas, Bertha ;
Perez-Sanchez, Beatriz .
ADVANCES IN COMPUTATIONAL INTELLIGENCE (IWANN 2021), PT II, 2021, 12862 :343-355
[43]   Approximation capability of two hidden layer feedforward neural networks with fixed weights [J].
Guliyev, Namig J. ;
Ismailov, Vugar E. .
NEUROCOMPUTING, 2018, 316 :262-269
[44]   Threefold vs. fivefold cross validation in one-hidden-layer and two-hidden-layer predictive neural network modeling of machining surface roughness data [J].
Feng, Chang-Xue Jack ;
Yu, Zhi-Guang ;
Kingi, Unnati ;
Baig, M. Pervaiz .
JOURNAL OF MANUFACTURING SYSTEMS, 2005, 24 (02) :93-107
[45]   Efficiently Learning One Hidden Layer Neural Networks From Queries [J].
Chen, Sitan ;
Klivans, Adam R. ;
Meka, Raghu .
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
[46]   Improved Linear Convergence of Training CNNs With Generalizability Guarantees: A One-Hidden-Layer Case [J].
Zhang, Shuai ;
Wang, Meng ;
Xiong, Jinjun ;
Liu, Sijia ;
Chen, Pin-Yu .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (06) :2622-2635
[47]   Using three layer neural networks to compute discrete real functions [J].
Wang, Jian ;
Yang, Yixian ;
Jiang, Nan ;
Zhang, Zhaozhi ;
Ma, Xiaomin .
ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 1, PROCEEDINGS, 2007, :446-+
[48]   How Does Promoting the Minority Fraction Affect Generalization? A Theoretical Study of One-Hidden-Layer Neural Network on Group Imbalance [J].
Li, Hongkang ;
Zhang, Shuai ;
Zhang, Yihua ;
Wang, Meng ;
Liu, Sijia ;
Chen, Pin-Yu .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2024, 18 (02) :216-231
[49]   Enhancing Healthcare Model Trustworthiness Through Theoretically Guaranteed One-Hidden-Layer CNN Purification [J].
Lu, Hanxiao ;
Huang, Zeyu ;
Wang, Ren .
TRUSTWORTHY MACHINE LEARNING FOR HEALTHCARE, TML4H 2023, 2023, 13932 :122-133
[50]   Single Hidden Layer Neural Networks With Random Weights Based on Nondifferentiable Functions [J].
Huerfano-Maldonado, Yoleidy ;
Vilches-Ponce, Karina ;
Mora, Marco ;
Tauber, Clovis ;
Vera, Miguel .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025,