Bio-inspired cryptosystem with DNA cryptography and neural networks

被引:23
|
作者
Basu, Sayantani [1 ]
Karuppiah, Marimuthu [1 ]
Nasipuri, Mita [2 ]
Halder, Anup Kumar [2 ]
Radhakrishnan, Niranchana [1 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci & Engn, Vellore 632014, Tamil Nadu, India
[2] Jadavpur Univ, Dept Comp Sci & Engn, Kolkata 700032, India
关键词
Cryptosystem; Bio-inspired; Central dogma; Key generation; AUTHENTICATION SCHEME; ROAMING SERVICE;
D O I
10.1016/j.sysarc.2019.02.005
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Bio-Inspired Cryptosystems are a modern form of Cryptography where bio-inspired and machine learning techniques are used for the purpose of securing data. A system has been proposed based on the Central Dogma of Molecular Biology (CDMB) for the Encryption and Decryption Algorithms by simulating the natural processes of Genetic Coding (conversion from binary to DNA bases), Transcription (conversion from DNA to mRNA) and Translation (conversion from mRNA to Protein) as well as the reverse processes to allow for encryption and decryption respectively. All inputs are considered to be in the form of blocks of 16-bits. The final outputs from the blocks can be concatenated to form the final cipher text in the form of protein bases. A Bidirectional Associative Memory Neural Network (BAMNN) has been trained using randomized data for key generation which is capable of saving memory space by remembering and regenerating the sets of keys in a recurrent fashion. The proposed bio-inspired cryptosystem shows competent encryption and decryption times even on large data sizes when compared with existing systems.
引用
收藏
页码:24 / 31
页数:8
相关论文
共 50 条
  • [1] A bio-inspired algorithm for enhancing DNA cryptography
    Lakel, Kheira
    Bendella, Fatima
    INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTER SECURITY, 2023, 21 (3-4) : 436 - 456
  • [2] Bio-inspired Bio-inspired computer vision based on neural networks
    Antón-Rodríguez M.
    González-Ortega D.
    Díaz-Pernas F.J.
    Martínez-Zarzuela M.
    de la Torre-Díez I.
    Boto-Giralda D.
    Díez-Higuera J.F.
    Pattern Recognition and Image Analysis, 2011, 21 (2) : 108 - 112
  • [3] Bio-inspired large cellular neural networks
    Jannson, Tomasz P.
    Forrester, Thomas C.
    Chua, Kung-Bin
    Reznikov, Michael
    EVOLUTIONARY AND BIO-INSPIRED COMPUTATION: THEORY AND APPLICATIONS, 2007, 6563
  • [4] Bio-Inspired Backpropagation in Spiking Neural Networks
    Schubert, Fabian
    Nowotny, Thomas
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2024, 52 : S96 - S97
  • [5] Bio-inspired stochastic neural networks for nanoelectronics
    Rouw, E
    Hoekstra, J
    COMPUTING ANTICIPATORY SYSTEMS, 2002, 627 : 501 - 513
  • [6] Bio-Inspired Backpropagation in Spiking Neural Networks
    Schubert, Fabian
    Nowotny, Thomas
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2024, 52 : S96 - S97
  • [7] Adaptive Orthogonal Characteristics of Bio-Inspired Neural Networks
    Ishii, Naohiro
    Deguchi, Toshinori
    Kawaguchi, Masashi
    Sasaki, Hiroshi
    Matsuo, Tokuro
    LOGIC JOURNAL OF THE IGPL, 2022, 30 (04) : 578 - 598
  • [8] Bio-inspired memory generation by recurrent neural networks
    Bedia, Manuel G.
    Corchado, Juan M.
    Castillo, Luis F.
    COMPUTATIONAL AND AMBIENT INTELLIGENCE, 2007, 4507 : 55 - +
  • [9] Adaptive Orthogonal Characteristics of Bio-inspired Neural Networks
    Ishii, Naohiro
    Deguchi, Toshinori
    Kawaguchi, Masashi
    Sasaki, Hiroshi
    Matsuo, Tokuro
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2019, PT I, 2019, 11871 : 47 - 59
  • [10] Bio-inspired cryptosystem on the reciprocal domain: DNA strands mutate to secure health data
    Aashiq Banu, S.
    Amirtharajan, Rengarajan
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2021, 22 (07) : 940 - 956