Asymmetry Disentanglement Network for Interpretable Acute Ischemic Stroke Infarct Segmentation in Non-contrast CT Scans

被引:12
作者
Ni, Haomiao [1 ]
Xue, Yuan [2 ]
Wong, Kelvin [3 ]
Volpi, John [4 ]
Wong, Stephen T. C. [3 ]
Wang, James Z. [1 ]
Huang, Xiaolei [1 ]
机构
[1] Penn State Univ, University Pk, PA 16802 USA
[2] Johns Hopkins Univ, Baltimore, MD USA
[3] Houston Methodist Hosp, TT & WF Chao Ctr BRAIN, Houston Methodist Canc Ctr, Houston, TX USA
[4] Houston Methodist Hosp, Dept Neurol, Eddy Scurlock Comprehens Stroke Ctr, Houston, TX USA
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII | 2022年 / 13438卷
关键词
D O I
10.1007/978-3-031-16452-1_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate infarct segmentation in non-contrast CT (NCCT) images is a crucial step toward computer-aided acute ischemic stroke (AIS) assessment. In clinical practice, bilateral symmetric comparison of brain hemispheres is usually used to locate pathological abnormalities. Recent research has explored asymmetries to assist with AIS segmentation. However, most previous symmetry-based work mixed different types of asymmetries when evaluating their contribution to AIS. In this paper, we propose a novel Asymmetry Disentanglement Network (ADN) to automatically separate pathological asymmetries and intrinsic anatomical asymmetries in NCCTs for more effective and interpretable AIS segmentation. ADN first performs asymmetry disentanglement based on input NCCTs, which produces different types of 3D asymmetry maps. Then a synthetic, intrinsic-asymmetry-compensated and pathology-asymmetry-salient NCCT volume is generated and later used as input to a segmentation network. The training of ADN incorporates domain knowledge and adopts a tissue-type aware regularization loss function to encourage clinically-meaningful pathological asymmetry extraction. Coupled with an unsupervised 3D transformation network, ADN achieves state-of-the-art AIS segmentation performance on a public NCCT dataset. In addition to the superior performance, we believe the learned clinically-interpretable asymmetry maps can also provide insights towards a better understanding of AIS assessment. Our code is available at https://github.com/nihaomiao/MICCAI22_ADN.
引用
收藏
页码:416 / 426
页数:11
相关论文
共 28 条
[1]   Machine learning for neuroirnaging with scikit-learn [J].
Abraham, Alexandre ;
Pedregosa, Fabian ;
Eickenberg, Michael ;
Gervais, Philippe ;
Mueller, Andreas ;
Kossaifi, Jean ;
Gramfort, Alexandre ;
Thirion, Bertrand ;
Varoquaux, Gael .
FRONTIERS IN NEUROINFORMATICS, 2014, 8
[2]   Multimodal image coregistration and partitioning - A unified framework [J].
Ashburner, J ;
Friston, K .
NEUROIMAGE, 1997, 6 (03) :209-217
[3]  
Ashburner J., 2014, SPM12 MANUAL, V2464, P4
[4]   MDAN: Mirror Difference Aware Network for Brain Stroke Lesion Segmentation [J].
Bao, Qiqi ;
Mi, Shiyu ;
Gang, Bowen ;
Yang, Wenming ;
Chen, Jie ;
Liao, Qingmin .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (04) :1628-1639
[5]  
Barman A, 2019, I S BIOMED IMAGING, P1873, DOI [10.1109/isbi.2019.8759475, 10.1109/ISBI.2019.8759475]
[6]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[7]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[8]   Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutional neural networks [J].
Clerigues, Albert ;
Valverde, Sergi ;
Bernal, Jose ;
Freixenet, Jordi ;
Oliver, Arnau ;
Llado, Xavier .
COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 115
[9]   Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019 [J].
Feigin, Valery L. ;
Stark, Benjamin A. ;
Johnson, Catherine Owens ;
Roth, Gregory A. ;
Bisignano, Catherine ;
Abady, Gdiom Gebreheat ;
Abbasifard, Mitra ;
Abbasi-Kangevari, Mohsen ;
Abd-Allah, Foad ;
Abedi, Vida ;
Abualhasan, Ahmed ;
Abu-Rmeileh, Niveen Me ;
Abushouk, Abdelrahman, I ;
Adebayo, Oladimeji M. ;
Agarwal, Gina ;
Agasthi, Pradyumna ;
Ahinkorah, Bright Opoku ;
Ahmad, Sohail ;
Ahmadi, Sepideh ;
Salih, Yusra Ahmed ;
Aji, Budi ;
Akbarpour, Samaneh ;
Akinyemi, Rufus Olusola ;
Al Hamad, Hanadi ;
Alahdab, Fares ;
Alif, Sheikh Mohammad ;
Alipour, Vahid ;
Aljunid, Syed Mohamed ;
Almustanyir, Sami ;
Al-Raddadi, Rajaa M. ;
Salman, Rustam Al-Shahi ;
Alvis-Guzman, Nelson ;
Ancuceanu, Robert ;
Anderlini, Deanna ;
Anderson, Jason A. ;
Ansar, Adnan ;
Antonazzo, Ippazio Cosimo ;
Arabloo, Jalal ;
Arnlov, Johan ;
Artanti, Kurnia Dwi ;
Aryan, Zahra ;
Asgari, Samaneh ;
Ashraf, Tahira ;
Athar, Mohammad ;
Atreya, Alok ;
Ausloos, Marcel ;
Baig, Atif Amin ;
Baltatu, Ovidiu Constantin ;
Banach, Maciej ;
Barboza, Miguel A. .
LANCET NEUROLOGY, 2021, 20 (10) :795-820
[10]   Heart Disease and Stroke Statistics-2013 Update A Report From the American Heart Association [J].
Go, Alan S. ;
Mozaffarian, Dariush ;
Roger, Veronique L. ;
Benjamin, Emelia J. ;
Berry, Jarett D. ;
Borden, William B. ;
Bravata, Dawn M. ;
Dai, Shifan ;
Ford, Earl S. ;
Fox, Caroline S. ;
Franco, Sheila ;
Fullerton, Heather J. ;
Gillespie, Cathleen ;
Hailpern, Susan M. ;
Heit, John A. ;
Howard, Virginia J. ;
Huffman, Mark D. ;
Kissela, Brett M. ;
Kittner, Steven J. ;
Lackland, Daniel T. ;
Lichtman, Judith H. ;
Lisabeth, Lynda D. ;
Magid, David ;
Marcus, Gregory M. ;
Marelli, Ariane ;
Matchar, David B. ;
McGuire, Darren K. ;
Mohler, Emile R. ;
Moy, Claudia S. ;
Mussolino, Michael E. ;
Nichol, Graham ;
Paynter, Nina P. ;
Schreiner, Pamela J. ;
Sorlie, Paul D. ;
Stein, Joel ;
Turan, Tanya N. ;
Virani, Salim S. ;
Wong, Nathan D. ;
Woo, Daniel ;
Turner, Melanie B. .
CIRCULATION, 2013, 127 (01) :E6-E245