Gradient Schemes for an Obstacle Problem

被引:3
作者
Alnashri, Yahya [1 ,2 ]
Droniou, Jerome [1 ]
机构
[1] Monash Univ, Melbourne, Vic, Australia
[2] Umm Alqura Univ, Mecca, Saudi Arabia
来源
FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS | 2014年 / 77卷
关键词
VARIATIONAL-INEQUALITIES; POROUS-MEDIA; APPROXIMATION;
D O I
10.1007/978-3-319-05684-5_5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is to adapt the gradient schemes, discretisations of weak variational formulations using independent approximations of functions and gradients, to obstacle problems modelled by linear and non-linear elliptic variational inequalities. It is highlighted in this paper that four properties which are coercivity, consistency, limit conformity and compactness are adequate to ensure the convergence of this scheme. Under some suitable assumptions, the error estimate for linear equations is also investigated.
引用
收藏
页码:67 / 75
页数:9
相关论文
共 10 条
  • [1] BREZIS HR, 1968, B SOC MATH FR, V96, P153
  • [2] Droniou J., 2014, GRADIENT SCHEM UNPUB
  • [3] GRADIENT SCHEMES: A GENERIC FRAMEWORK FOR THE DISCRETISATION OF LINEAR, NONLINEAR AND NONLOCAL ELLIPTIC AND PARABOLIC EQUATIONS
    Droniou, Jerome
    Eymard, Robert
    Gallouet, Thierry
    Herbin, Raphaele
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (13) : 2395 - 2432
  • [4] Duvaut G., 1976, INEQUALITIES MECH PH, Vfirst, DOI [10.1007/978-3-642-66165-5, DOI 10.1007/978-3-642-66165-5]
  • [5] SMALL-STENCIL 3D SCHEMES FOR DIFFUSIVE FLOWS IN POROUS MEDIA
    Eymard, Robert
    Guichard, Cindy
    Herbin, Raphaele
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (02): : 265 - 290
  • [6] FALK RS, 1974, MATH COMPUT, V28, P963, DOI 10.1090/S0025-5718-1974-0391502-8
  • [7] Glowinski R., 1981, Numerical Analysis of Variational Inequalities
  • [8] Finite volume approximation of a class of variational inequalities
    Herbin, R
    Marchand, E
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (02) : 553 - 585
  • [9] Kinderlehrer D., 1980, An introduction to variational inequalities and their applications, V88
  • [10] A variational inequality formulation for unconfined seepage problems in porous media
    Zheng, Hong
    Dai, Hui Chao
    Liu, De Fu
    [J]. APPLIED MATHEMATICAL MODELLING, 2009, 33 (01) : 437 - 450