Scalar conservation laws on moving hypersurfaces

被引:31
作者
Dziuk, Gerhard [1 ]
Kroener, Dietmar [1 ]
Mueller, Thomas [1 ]
机构
[1] Univ Freiburg, Abt Angew Math, D-79104 Freiburg, Germany
关键词
Hyperbolic; Conservation Laws; Evolving Surfaces; Total Variation Estimates; Finite Volume Schemes; FINITE-VOLUME METHODS; EVOLVING SURFACES; DIFFERENTIAL-EQUATIONS; ELEMENT-METHOD; MANIFOLDS; SCHEME;
D O I
10.4171/IFB/301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider conservation laws on moving hypersurfaces. In this work the velocity of the surface is prescribed. But one may think of the velocity to be given by PDEs in the bulk phase. We prove existence and uniqueness for a scalar conservation law on the moving surface. This is done via a parabolic regularization of the hyperbolic PDE. We then prove suitable estimates for the solution of the regularized PDE, that are independent of the regularization parameter. We introduce the concept of an entropy solution for a scalar conservation law on a moving hypersurface. We also present some numerical experiments. As in the Euclidean case we expect discontinuous solutions, in particular shocks. It turns out that in addition to the "Euclidean shocks" geometrically induced shocks may appear.
引用
收藏
页码:203 / 236
页数:34
相关论文
共 33 条
  • [1] Amorim P, 2005, METHODS APPL ANAL, V12, P291
  • [2] A geometric approach to error estimates for conservation laws posed on a spacetime
    Amorim, Paulo
    LeFloch, Philippe G.
    Neves, Wladimir
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (15) : 4898 - 4917
  • [3] AUBIN T, 1982, RIHE GRUNDLEHREN MAT, V252
  • [4] Bale D. S., THESIS
  • [5] Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds
    Ben-Artzi, Matania
    LeFloch, Philippe G.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (06): : 989 - 1008
  • [6] Hyperbolic conservation laws on the sphere. A geometry-compatible finite volume scheme
    Ben-Artzi, Matania
    Falcovitz, Joseph
    LeFloch, Philippe G.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (16) : 5650 - 5668
  • [7] Logically rectangular finite volume methods with adaptive refinement on the sphere
    Berger, Marsha J.
    Calhoun, Donna A.
    Helzel, Christiane
    LeVeque, Randall J.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1907): : 4483 - 4496
  • [8] Logically Rectangular Grids and Finite Volume Methods for PDEs in Circular and Spherical Domains
    Calhoun, Donna A.
    Helzel, Christiane
    LeVeque, Randall J.
    [J]. SIAM REVIEW, 2008, 50 (04) : 723 - 752
  • [9] Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces
    Cermelli, P
    Fried, E
    Gurtin, ME
    [J]. JOURNAL OF FLUID MECHANICS, 2005, 544 : 339 - 351
  • [10] Divergence-measure fields and hyperbolic conservation laws
    Chen, GQ
    Frid, H
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 147 (02) : 89 - 118