Engineering nanofluid electrodes: controlling rheology and electrochemical activity of γ-Fe2O3 nanoparticles

被引:13
作者
Sen, Sujat [1 ]
Moazzen, Elahe [2 ,3 ]
Aryal, Shankar [2 ,3 ]
Segre, Carlo U. [2 ,3 ]
Timofeeva, Elena V. [1 ]
机构
[1] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA
[2] IIT, Dept Phys, Chicago, IL 60616 USA
[3] IIT, CSRRI, Chicago, IL 60616 USA
关键词
Nanofluid; Nanoelectrofuel; Viscosity; Surface modification; Iron (III) oxide; Flow battery; MAGNETIC NANOPARTICLES; SUSPENSION ELECTRODE; OXIDE NANOPARTICLES; FERROFLUIDS; WATER; BATTERY;
D O I
10.1007/s11051-015-3242-8
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanofluid electrodes or nanoelectrofuels have significant potential in the field of flow batteries, as at high loadings of solid battery active nanoparticles, their energy density can be orders of magnitude higher than in traditional redox flow battery electrolytes. Nanofluid electrodes must have a manageable viscosity at high particle concentrations (i.e., easily pumpable) and exhibit good electrochemical activity toward charge and discharge reactions. Engineering of such nanofluid electrodes involves development of new and unique approaches to stabilization of nanoparticle suspensions. In this work, we demonstrate a surface modification approach that allows controlling the viscosity of nanofluids at high solid loading, while simultaneously retaining electrochemical activity of the nanoparticles. A scalable single step procedure for the surface grafting of small organic molecules onto iron (III) oxide nanoparticles (gamma-Fe2O3, maghemite, 40-150 nm) is demonstrated. Modified iron oxide nanoparticles reported here have similar to 5 wt% of the grafting moiety on the surface, which helps forming stable dispersions with up to 40 wt% of solid loading in alkali aqueous electrolytes with a maximum viscosity of 12 cP at room temperature. The maximum particle concentration achievable in the same electrolyte with pristine nanoparticles is 15 wt%. Electrochemical testing of the pristine and modified nanomaterials in the form of solid-casted electrodes showed a maximum reversible discharge capacity of 280 and 155 mAh/g, respectively, indicating that electrochemical activity of modified nanoparticles is partially suppressed due to the surface grafted moiety.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 28 条
[1]   Graphene-containing flowable electrodes for capacitive energy storage [J].
Boota, M. ;
Hatzell, K. B. ;
Alhabeb, M. ;
Kumbur, E. C. ;
Gogotsi, Y. .
CARBON, 2015, 92 :142-149
[2]   A benchmark study on the thermal conductivity of nanofluids [J].
Buongiorno, Jacopo ;
Venerus, David C. ;
Prabhat, Naveen ;
McKrell, Thomas ;
Townsend, Jessica ;
Christianson, Rebecca ;
Tolmachev, Yuriy V. ;
Keblinski, Pawel ;
Hu, Lin-wen ;
Alvarado, Jorge L. ;
Bang, In Cheol ;
Bishnoi, Sandra W. ;
Bonetti, Marco ;
Botz, Frank ;
Cecere, Anselmo ;
Chang, Yun ;
Chen, Gany ;
Chen, Haisheng ;
Chung, Sung Jae ;
Chyu, Minking K. ;
Das, Sarit K. ;
Di Paola, Roberto ;
Ding, Yulong ;
Dubois, Frank ;
Dzido, Grzegorz ;
Eapen, Jacob ;
Escher, Werner ;
Funfschilling, Denis ;
Galand, Quentin ;
Gao, Jinwei ;
Gharagozloo, Patricia E. ;
Goodson, Kenneth E. ;
Gutierrez, Jorge Gustavo ;
Hong, Haiping ;
Horton, Mark ;
Hwang, Kyo Sik ;
Iorio, Carlo S. ;
Jang, Seok Pil ;
Jarzebski, Andrzej B. ;
Jiang, Yiran ;
Jin, Liwen ;
Kabelac, Stephan ;
Kamath, Aravind ;
Kedzierski, Mark A. ;
Kieng, Lim Geok ;
Kim, Chongyoup ;
Kim, Ji-Hyun ;
Kim, Seokwon ;
Lee, Seung Hyun ;
Leong, Kai Choong .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
[3]   Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries [J].
Chen, Hongning ;
Zou, Qingli ;
Liang, Zhuojian ;
Liu, Hao ;
Li, Quan ;
Lu, Yi-Chun .
NATURE COMMUNICATIONS, 2015, 6
[4]   Semi-Solid Lithium Rechargeable Flow Battery [J].
Duduta, Mihai ;
Ho, Bryan ;
Wood, Vanessa C. ;
Limthongkul, Pimpa ;
Brunini, Victor E. ;
Carter, W. Craig ;
Chiang, Yet-Ming .
ADVANCED ENERGY MATERIALS, 2011, 1 (04) :511-516
[5]   THE SUSPENSION ELECTRODE TECHNIQUE FOR ELECTROCHEMICAL ANALYSIS OF LEAD DIOXIDE [J].
GARCHE, J ;
DIETZ, H ;
WIESENER, K .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1984, 180 (1-2) :577-585
[6]   Magnetite nanoparticle dispersions stabilized with triblock copolymers [J].
Harris, LA ;
Goff, JD ;
Carmichael, AY ;
Riffle, JS ;
Harburn, JJ ;
St Pierre, TG ;
Saunders, M .
CHEMISTRY OF MATERIALS, 2003, 15 (06) :1367-1377
[7]   Composite Manganese Oxide Percolating Networks As a Suspension Electrode for an Asymmetric Flow Capacitor [J].
Hatzell, Kelsey B. ;
Fan, Lei ;
Beidaghi, Majid ;
Boota, Muhammad ;
Pomerantseva, Ekaterina ;
Kumbur, Emin C. ;
Gogotsi, Yury .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (11) :8886-8893
[8]   Rheological properties of water-based Fe3O4 ferrofluids [J].
Hong, R. Y. ;
Ren, Z. Q. ;
Han, Y. P. ;
Li, H. Z. ;
Zheng, Y. ;
Ding, J. .
CHEMICAL ENGINEERING SCIENCE, 2007, 62 (21) :5912-5924
[9]   Preparation, characterization and application of bilayer surfactant-stabilized ferrofluids [J].
Hong, R. Y. ;
Zhang, S. Z. ;
Han, Y. P. ;
Li, H. Z. ;
Ding, J. ;
Zheng, Y. .
POWDER TECHNOLOGY, 2006, 170 (01) :1-11
[10]   Optimized Steric Stabilization of Aqueous Ferrofluids and Magnetic Nanoparticles [J].
Jain, Nirmesh ;
Wang, Yanjun ;
Jones, Stephen K. ;
Hawkett, Brian S. ;
Warr, Gregory G. .
LANGMUIR, 2010, 26 (06) :4465-4472