Hyperspectral Image Classification by Nonlocal Joint Collaborative Representation With a Locally Adaptive Dictionary

被引:184
作者
Li, Jiayi [1 ]
Zhang, Hongyan [1 ]
Huang, Yuancheng [2 ]
Zhang, Liangpei [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[2] Xian Univ Sci & Technol, Coll Geomat, Xian 710054, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2014年 / 52卷 / 06期
基金
中国国家自然科学基金;
关键词
Classification; hyperspectral imagery; joint collaboration model; k-nearest neighbor (K-NN); sparse representation; REMOTE-SENSING IMAGES; FACE RECOGNITION; DIMENSIONALITY REDUCTION; SPARSE REPRESENTATION; REGRESSION;
D O I
10.1109/TGRS.2013.2274875
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Sparse representation has been widely used in image classification. Sparsity-based algorithms are, however, known to be time consuming. Meanwhile, recent work has shown that it is the collaborative representation (CR) rather than the sparsity constraint that determines the performance of the algorithm. We therefore propose a nonlocal joint CR classification method with a locally adaptive dictionary (NJCRC-LAD) for hyperspectral image (HSI) classification. This paper focuses on the working mechanism of CR and builds the joint collaboration model (JCM). The joint-signal matrix is constructed with the nonlocal pixels of the test pixel. A subdictionary is utilized, which is adaptive to the nonlocal signal matrix instead of the entire dictionary. The proposed NJCRC-LAD method is tested on three HSIs, and the experimental results suggest that the proposed algorithm outperforms the corresponding sparsity-based algorithms and the classical support vector machine hyperspectral classifier.
引用
收藏
页码:3707 / 3719
页数:13
相关论文
共 40 条
[1]  
[Anonymous], 2012, ARXIV12042358
[2]  
[Anonymous], 2010, ARXIV10073753
[3]  
[Anonymous], 2009, ARXIV09013403
[4]   Classification of multisource and hyperspectral data based on decision fusion [J].
Benediktsson, JA ;
Kanellopoulos, I .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (03) :1367-1377
[5]   Nearest neighbor classification of remote sensing images with the maximal margin principle [J].
Blanzieri, Enrico ;
Melgani, Farid .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (06) :1804-1811
[6]   Hyperspectral Image Classification via Kernel Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01) :217-231
[7]   Hyperspectral Image Classification Using Dictionary-Based Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10) :3973-3985
[8]   Hyperspectral image classification using relevance vector machines [J].
Demir, Beguem ;
Erturk, Sarp .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (04) :586-590
[9]   Extended SRC: Undersampled Face Recognition via Intraclass Variant Dictionary [J].
Deng, Weihong ;
Hu, Jiani ;
Guo, Jun .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (09) :1864-1870
[10]   Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization [J].
Dong, Weisheng ;
Zhang, Lei ;
Shi, Guangming ;
Wu, Xiaolin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (07) :1838-1857