Applied topology optimization of vibro-acoustic hearing instrument models

被引:19
作者
Sondergaard, Morten Birkmose [1 ]
Pedersen, Claus B. W. [2 ]
机构
[1] GN ReSound AS, DK-2750 Ballerup, Denmark
[2] Dassault Syst, SIMULIA, D-22765 Hamburg, Germany
关键词
DESIGN; SHAPE;
D O I
10.1016/j.jsv.2013.09.029
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Designing hearing instruments remains an acoustic challenge as users request small designs for comfortable wear and cosmetic appeal and at the same time require sufficient amplification from the device. First, to ensure proper amplification in the device, a critical design challenge in the hearing instrument is to minimize the feedback between the outputs (generated sound and vibrations) from the receiver looping back into the microphones. Secondly, the feedback signal is minimized using time consuming trial-and-error design procedures for physical prototypes and virtual models using finite element analysis. In the present work it is demonstrated that structural topology optimization of vibro-acoustic finite element models can be used to both sufficiently minimize the feedback signal and to reduce the time consuming trial-and-error design approach. The structural topology optimization of a vibro-acoustic finite element model is shown for an industrial full scale model hearing instrument. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:683 / 692
页数:10
相关论文
共 50 条
[21]   Vibro-acoustic analysis of the sound transmission through aerospace composite structures [J].
Kaidouchi, Hicham ;
Kebdani, Said ;
Slimane, Sid Ahmed .
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2023, 30 (19) :3912-3922
[22]   Accuracy of vibro-acoustic computations using non-equidistant frequency spacing [J].
Klaerner, Matthias ;
Wuehrl, Mario ;
Kroll, Lothar ;
Marburg, Steffen .
APPLIED ACOUSTICS, 2019, 145 :60-68
[23]   Topology Optimization Applied to Transpiration Cooling [J].
Munk, David J. ;
Selzer, Markus ;
Steven, Grant P. ;
Vio, Gareth A. .
AIAA JOURNAL, 2019, 57 (01) :297-312
[24]   An experimental-numerical study on the vibro-acoustic characterization of honeycomb lightweight panels [J].
Vivolo, M. ;
Pluymers, B. ;
Vandepitte, D. ;
Desmet, W. .
PROCEEDINGS OF ISMA2010 - INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING INCLUDING USD2010, 2010, :2197-2211
[25]   Vibro-acoustic optimisation of sandwich panels using the wave/finite element method [J].
Droz, C. ;
Zergoune, Z. ;
Boukadia, R. ;
Bareille, O. ;
Ichchou, M. N. .
COMPOSITE STRUCTURES, 2016, 156 :108-114
[26]   Robust optimisation of vibro-acoustic system based on an elliptical basis function neural network [J].
Chen, Wanglin ;
Gu, Zhengqi ;
Ma, Xiaokui ;
Zhang, Sha ;
Han, Zhengtong ;
Zon, Yiqi .
APPLIED ACOUSTICS, 2019, 145 :41-51
[27]   Review of Manufacturing Processes and Vibro-Acoustic Assessments of Composite and Alternative Materials for Musical Instruments [J].
Brezas, Spyros ;
Katsipis, Markos ;
Kaleris, Konstantinos ;
Papadaki, Helen ;
Katerelos, Dionysios T. G. ;
Papadogiannis, Nektarios A. ;
Bakarezos, Makis ;
Dimitriou, Vasilis ;
Kaselouris, Evaggelos .
APPLIED SCIENCES-BASEL, 2024, 14 (06)
[28]   Structural-dynamic and vibro-acoustic analysis of fibre-reinforced and sandwich structures [J].
Hufenbach, W ;
Holste, C ;
Täger, O .
REVOLUTIONARY MATERIALS: TECHNOLOGY AND ECONOMICS, 2000, 32 :661-672
[29]   Random vibro-acoustic control of internal noise through optimized Tuned Mass Dampers [J].
Mrabet, E. ;
Ichchou, M. N. ;
Bouhaddi, N. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 130 :17-40
[30]   Novel numerical method for uncertainty analysis of coupled vibro-acoustic problem considering thermal stress [J].
Wang, Chong ;
Hong, Lin ;
Qiang, Xin ;
Xu, Menghui .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 420